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§ Context on Exascale and current work

§ Two examples from Exascale work
§ Batched Sparse Solvers
§ Multiprecision 

§ Two examples from post-Exascale work
§ HPCG on data flow hardware
§ Molecular Dynamics on data flow hardware
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My sandbox to play with algorithms, programming models, software
Sparse Linear Algebra, Dense Linear Algebra, Linear Solvers, Graph Algorithms, ….
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My sandbox to play with algorithms, programming models, software
Sparse Linear Algebra, Dense Linear Algebra, Linear Solvers, Graph Algorithms, ….

Trilinos, Kokkos, Kokkos Kernels …

SNL LAMMPS
Molecular Dynamics

ARM CPUs
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View of HPC since 2003: Change is the only constant
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Almost two decades since the first set of “general purpose” kernels 
on HPIs to applications running at scale 

2003: Optimize 
for multithreaded 
CPU performance

2005:

First version of Kokkos 
proposed by Mike 
Heroux

Start considering GPUs 
as GPGPUs, BrookGPU

2014: Serious work in 
linear algebra using 
GPUs and multicore 
CPUs, linear solvers

2012: Second 
version of 
Kokkos

5

NNSA ATDM 
program begins ECP begins

2010:

Several new linear 
algebra algorithms for 
GPUs, Garland and Bell 
SpMV

2015: Third rebirth of 
Kokkos, Kokkos 
Kernels, Kokkos 
ecosystem
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0. Identify performance critical kernels
§ Call library based option when possible
§ Allows library developers to optimize the kernels

 1. Develop portable algorithms when library based option not available
§  Use a portable programming model 
§  Use architecture independent abstractions
§  Pay attention to memory layouts, hierarchical parallelism, synchronization costs

2. Expose more parallelism with new algorithms
§ Edge-based, Non-zero based algorithms, Block-based algorithms, Clever use of  sparsity etc.

3. Use team level data structures and linear algebra kernels when possible
§ Optimize performance at all the hierarchical levels

Linear algebra community is very good at adapting to changes in 
hardware and to application needs

Algorithm Design for Exascale Hardware



Motivation: Numerical strategies for solving PDEs can 
lead to large number (𝑵) of  small (𝒏) similar sparse 
linear systems to be solved independently (𝑁 >> 𝑛)

Two vendor strategies:
1. Loop over 𝑁	systems, solve each with vendor sparse 

solver (slow)
2. Convert all systems to dense and use batched dense 

solver if  available (high-memory footprint) -> This 
is what the community has been focused on for 6-
7 years

Performance Portable Batched Sparse Solvers

A (^) = H

#

=

7

Out of  
memory

No good options that can satisfy performance needs 
and be robust 

w/ Kim Liegeois, and L. Berger-Vergiat



New Strategy for Batched Sparse Krylov8

Batched sparse solvers implemented 
using performance portable batched 

kernels at team level

<

One group/team per color.

• 𝑁 systems gathered into groups of 𝑚 
systems 𝑚 << 𝑁
• E.g., on new Intel CPU architectures, 

one can use 𝑚=8 and solvers can 
use vectorization to solve the group 
of systems at the team level.

• Hierarchical parallelism to solve 𝑚 
systems using a sparse iterative solver 
at team level

Cool but crazy idea: Implementing a 
sparse Krylov solvers to solve many 

small systems with ~100 of kB!!



Batched Sparse Solver (GMRES) Performance Results9

Team batched sparse solvers efficient use of GPU resources yields two 
order magnitude speedup versus sequential use of sparse solvers

Batched GMRES can solve larger problems than 
batched dense solver from NVIDIA due to reduced 
memory

Performance portable to other architecture (same algorithm, 
different hyperparameters such as 𝑚)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

Intel CPUs, and AMD and NVIDIA GPUs. We achieve
this by using the Kokkos library [8] to implement our
hierarchical parallel algorithms. The performance of our
batched linear sparse solvers will depend primarily on the
performance of our batched sparse matrix vector multiply
kernel. As a result, we devote considerable effort to
improve the performance of batched sparse matrix vector
multiplies including choosing the right parameters for the
kernel implementation using auto-tuning approaches.

To summarize, the primary contributions of this work
are:

• A batched sparse linear solver algorithm for solving
large number of small to medium size, independent,
sparse linear systems.

• A performance portable implementation of these
solvers using the Kokkos library made available pub-
licly in the Kokkos Kernels library [6].

• An optimized batched sparse matrix vector multiply
(SPMV) kernel that is tuned for the architectures of
interest. This kernel is used within the batched Krylov
methods.

• Performance comparisons on CPUs and GPUs that
demonstrate that the solver achieves state-of-the-art
performance.

We are aware of a parallel work to develop batched
sparse linear solver [9], [10]. We have developed these
methods as part of the same project targeting similar
applications. The solvers developed here are already in-
tegrated into the Trilinos and the PETSc libraries. The
latter uses these solvers for solving the Landau collision
operator [1]. We will not focus on these application use
cases as part of this paper and instead focus on the
algorithm and performance aspects.

The paper is organized as follows: we introduce the
notations used in the rest of the paper in section II. In
section III, we recall some key concepts of the Kokkos
programming model which will be heavily used in the rest
of the paper. In section IV, we introduce the batched
linear system and we review the three existing strategies
to solve it using Krylov methods. In section V, we discuss,
and analyse the implementation of a batched SPMV. In
sections VI and VII, we discuss the use of the batched
SPMV within batched Krylov methods to solve batched
sparse linear systems. Finally, in section VIII, we provide
some conclusions and future work.

II. Notations
In the rest of this paper, we use the notation of Kolda et

al. [11], which we will restate concisely here. The number
of dimensions of a tensor is called order. Vectors (tensors
of order one) are denoted by boldface lowercase letters
such as y, matrices (tensors of order two) by boldface
uppercase letters such as _, and higher-order tensors by
boldface Euler script letters such as P. The 8-th entry of
y is denoted by H8, the (8, 9)-th entry of _ by H8 9 , and
the (8, 9 , :)-th entry of third-order tensor P by H8 9: . A
colon is used to indicate all elements of a dimension. A

50 100 150 200 250 300
10�3

10�2

10�1

100

101

102

Number of rows

T
im

e
[s

e
c
]

cuSOLVER sparse QR (i) cuSOLVER sparse block QR (iii)

cuSOLVER batched dense (ii) Batched GMRES (iv)

Fig. 1. Wall-clock time of the cuSOLVER sparse QR solver applied
on all the systems sequentially (i) and on the blocked system formed
by gathering the batched system (iii), of the cuSOLVER batched
dense solver (ii), and of the Kokkos Kernels batched GMRES with
a left Jacobi preconditioner and a classical Gram–Schmidt orthogo-
nalization process (iv) to solve a batched system of 20,000 randomly
generated, symmetric positive definite matrices. The matrices are
symmetric positive definite as this is a requirement for the cusolverD-
nDpotrfBatched batched dense solver. The sparsity pattern is the one
of a 2D Laplacian discretized using FEM on a V100 NVIDIA GPU.
The batched dense solver cannot be successfully used when number
of rows equal to 190 or more because it was impossible to allocate
enough memory to store the batched matrix in a dense format. The
application of the sparse QR to the block diagonal system starts to
fail for number of rows equal to 270 or more. For larger number of
rows such as 300, the batched GMRES has a speed-up of about 540x
compared to the only other option that works (using the cuSOLVER
sparse QR). Our proposed solver (iv) was on average 76x and 924x
compared to approach (iii) and approach (i), respectively. We see
mean speedup of 0.51 compared to approach (ii) while using lot less
memory.

colon within a parenthesis is used to indicate all elements
within a range of one dimension; for example the 8-th to 9-
th entries of y are denoted by y (8: 9) which is still a tensor of
order one and therefore needs a boldface lowercase letter.
A fiber is obtained by fixing every index but one. The 9-th
column of _ is the fiber denoted by y: 9 , and the 8-th row
of _ is the fiber denoted by y8:. Third-order tensors have
tube, column, and row fibers, denoted for P by y: 9: , y8:: ,
and y8 9:, respectively. Slices are obtained by fixing all but
two indices. Third-order tensors have frontal, horizontal,
and lateral slices denoted for P by _ 8::, _ : 9:, and _ ::: ,
respectively. Finally, for each third-order tensor 8 made of
# frontal slices of size =⇥=, we associate a linear operator
A:

A : R#⇥= ! R#⇥=

: ^ =
⇥
x1: . . . x# :

⇤
7! A(^) =

⇥
G1::x1: . . . G# ::x# :

⇤
.

(1)

For the rest of the paper, the number of frontal slices
# will be denoted as the batch size and the number of
column and row fibers per frontal slice will be denoted as
the number of rows/columns.

III. Kokkos
We will now recall the key concepts of Kokkos [8]

which will be extensively used in this paper. Kokkos is a

924x



Multiprecision for Linear Solvers
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• Multiprecision hardware is becoming more common

• Avoid issues such as the  1991 roundoff  error on Partiot 
missile

• “Hence, with a less accurate truncated time of  one radar 
pulse being subtracted from a more accurate time of  
another radar pulse, the error no longer cancelled.”

• Sparse linear solvers: 64-bit accuracy with lower precision or 
multiprecision

• Option 1: GMRES-IR
• Inner iterations using lower precision
• Iterative refinement using higher precision

• Option 2: Lower precision preconditioners and higher 
precision solvers

Multiprecision xSDK
PI: S. Rajamanickam
Team: Boman, Loe, Glusa, Yamazaki

Can we get the higher performance offered by 
multiprecision hardware without sacrificing 

accuracy? 
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• GMRES-IR = GMRES with iterative refinement. Run 
GMRES + preconditioning in FP32, refine in FP64 to get 
double-precision accuracy. 

• Convergence typically follows double precision GMRES!

• Can also run GMRES-IR with single precision 
preconditioning. This example: Polynomial preconditioning of  
degree 40 for a Laplacian. 

• About 30% speedup over all-double precision. 

• Trilinos options to use single precision preconditioning 
with double precision solver. 
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Multiprecision for Linear Solvers



Post-Exascale: Data flow path feels the same way it felt in 2005

12

• Data flow is not a new idea
•  Data flow hardware as it exists today is different from what has been considered 

in the past  

Recent work focuses primarily on use cases for machine learning, 
however promising path for traditional science simulations

‘80s and ‘90s: 
Several data flow 
algorithms

Mostly ignored during the 
decade of the GPUs

Some work focused on 
sparsity on the academic 
side (SIGMA). Several early 
industry hardware emerge. 

State of the art in 
commercial hardware: 
Several hardware choices, 
vendor toolchain just 
beginning to emerge, 
Focus mainly on dense ML

2019: Office of 
Science ARIAA start

12

2022: NNSA AMT 
Phase 1 start 
(Cerebras), Co-
design with 
SambaNova

2023: NNSA AMT 
Phase 2 start 
(Cerebras)

AI accelerators:

Eyeriss, MAERI, SIGMA, TPU

Early research on on 
sparsity and accelerators



Turning the Titanic with a Leaf-blower: Influencing future hardware design13

Motivation : How can DOE/SNL use developments in industry and computer architectures to 
accelerate AI/HPC workflows?

• There are a large number of  AI/HPC companies 
producing specialized hardware. 

• Computer architecture community has been focused 
on data flow acceleration for several years.

• Quantify the benefits of  data flow hardware for DOE 
/ SNL mission using simulations and mini-applications 
on early hardware

• Three parallel efforts
• Advanced Memory Technologies – Cerebras
• ASC CSSE Co-design – SambaNova (not part of  this talk)
• Vanguard – II / Spectra – NextSilicon (not part of  this talk)
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A PCIe card for HPC       
Built to Break Boundaries

Successful co-design with industry could lead to accelerating  new classes of applications and 
low-energy accelerator alternative for other classes of applications
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Several optimizations can be performed on FFT to make 
it more effective for DNNs. To reduce the number of opera-
k`fej#�k_\�==K�f]�k_\�Ôck\i�ZXe�Y\�gi\Zfdglk\[�Xe[�jkfi\[%�
@e�X[[`k`fe#�k_\�==K�f]�k_\�`eglk�]\Xkli\�dXg�ZXe�Y\�Zfd-
glk\[�feZ\�Xe[�lj\[� kf�^\e\iXk\�dlck`gc\�Z_Xee\cj� `e� k_\�
flkglk� ]\Xkli\�dXg%�=`eXccp#� j`eZ\�Xe� `dX^\�ZfekX`ej�fecp�
i\Xc�mXcl\j#�`kj�=fli`\i�kiXej]fid�`j�jpdd\ki`Z#�Xe[�k_`j�ZXe�
Y\�\ogcf`k\[�kf�i\[lZ\�jkfiX^\�Xe[�ZfdglkXk`fe�Zfjk%

J`d`cXi�kf�==K#�N`ef^iX[Ëj�Xc^fi`k_d�R.-T�Xggc`\j�kiXej-
]fidj� kf� k_\� ]\Xkli\�dXg�Xe[�Ôck\i� kf� i\[lZ\� k_\�eldY\i�
f]� dlck`gc`ZXk`fej� i\hl`i\[� ]fi� Zfemfclk`fe%� N`ef^iX[� `j�
applied on a block-by-block basis and the reduction in mul-
k`gc`ZXk`fej�mXi`\j�YXj\[�fe�k_\�Ôck\i�Xe[�YcfZb�j`q\%�8�cXi^\i�
YcfZb�j`q\�i\jlckj�`e�X�cXi^\i�i\[lZk`fe�`e�dlck`gc`\j�Xk�k_\�
Zfjk�f]�_`^_\i�Zfdgc\o`kp�kiXej]fidj%�8�gXik`ZlcXicp�XkkiXZ-
k`m\� Ôck\i� j`q\� `j� �*�×�*�#� n_`Z_� ZXe� i\[lZ\� k_\� eldY\i� f]�
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k_\�eldY\i�f]�dlck`gc`ZXk`fej�`e�;EEj�R..T%�@k�i\XiiXe^\j�
the computations of a matrix multiplication in a recursive 
manner to reduce the number of multiplications from 
O(  N   *  ) to O(  N   )%/'.�� %�?fn\m\i#� JkiXjj\eËj� Y\e\Ôkj� Zfd\� Xk�
k_\�Zfjk�f]� `eZi\Xj\[�jkfiX^\�i\hl`i\d\ekj�Xe[�jfd\k`d\j�
reduced numerical stability [78].
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B. Energy-Efficient Dataflow for Accelerators
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Fig. 21. Read and write access per MAC.

Fig. 22. Memory hierarchy and data movement energy [82].

Data flow Architectures are emerging as an alternative to traditional 
accelerators
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• The primary architectural features that distinguish “spatial” or “data 

flow” accelerators for ML from CPUs and GPUs are 

• parallelism using hundreds to thousands of  processing elements (PEs)

• a fast network-on-chip connecting these and 

• use of  private/shared scratchpad buffers for data reuse.

• Differences from GPUs
• PEs communicate using Network-On-Chip (NOCs) without register file
• Spatial/ Temporal /Spatio-temporal data reuse

4/29/24FOOTER

Data flow architectures enable a 
high-risk, high-reward path to 

accelerate HPC and ML applications

Image Courtesy: Hardware for Machine Learning: Challenges and 
Opportunities, Sze et al. CICC 2017

Abstract data flow hardware and the potential 
benefits in energy cost

Need a rethink of algorithms, applications, 
programming models, compiler stack and the hardware 

features. Co-design is critical.
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Advanced Memory Technologies - Cerebras

Cerebras Wafer scale engine is the largest chip ever built
◦ 2.6 trillion transistors
◦ 850,000 AI optimized cores
◦ 40 Gigabytes of  On-chip Memory
◦ 20 PByte/s memory bandwidth

AI workloads are the primary target for the architecture

Key questions for our co-design efforts:
§ How can we map scientific codes (Implicit solvers, Explicit codes, 

Monte Carlo, Molecular Dynamics, Unstructured multi-resolution 
problems)

§ Is a 64-bit WSE possible?
§ Implement two selected codes (implicit solvers, molecular dynamics)
§ Sandia-led effort with LLNL, LANL and Cerebras

Explore co-design of algorithms for 
science simulations with a data flow 

hardware

15

8.5’’

Cerebras and NNSA Trilabs Team
Overall AMT Lead: Jim Laros, 
Cerebras AMT Lead: Siva 
Rajamanickam
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Cerebras – HPCG Mapping Co-design

Mapping a sparse scientific code to the WSE is possible through co-design 16

1×1×𝑍 gridpoints per tile

𝑥

𝑦𝑧

2×2×( ⁄! ") gridpoints per tile
𝑥

𝑦
𝑧

Careful mapping of  different domain aspect 
ratios to the 2D PE grid

Careful mapping of  computational 
kernels on the grid

SpMV
Dot Gauss-Seidel

High Performance Conjugate Gradient (HPCG) 
benchmark as proxy for implicit solvers
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Cerebras – HPCG Performance Projections

Simulation studies show potential to achieve ~50% utilization and reach exascale system 
performance with small number of wafers. 

17

WSE Cluster Performance

Fugaku
Frontier

(FP64)

Assumes non-overlapped IO
with CS-3 bandwidth levels

Utilization per Iteration (3D: 1x1xZ with Rebalance)

Compliant with HPCG <8:1 aspect ratio 
condition
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Molecular Dynamics on Wafer Scale Engine

Molecular Dynamics simulations are 
limited by the timescales we can 
simulate using even the entire 

exascale system

181

Ti
m
e

QM
MD

CM

10-14 s

100 s

10-10 m Length 10-2 m

Comparison of maximum MD timescale achievable using 
Cerebras Wafer-Scale Engine (WSE, green) and Exascale 
GPU hardware (GPU, gray). The boxes represent typical 
achievable ranges of length and time using different 
materials simulation approaches: quantum electronic  
methods (QM, left inset), molecular dynamics (MD, right 
inset) and continuum mechanics (CM).  Green and gray 
stars reflect measured performance for 800,000 Ta atoms 
(Fig. 2), assuming 30 days of wall-clock time on WSE and 
GPU hardware, respectively, The nearly 180-fold increase in 
maximum achievable timescale for MD using WSE is 
transformative for a broad range of applications in materials 
science, chemistry, and physics.

Assumptions: 
256*261*6*2 = 801792 Ta atoms
Length scale = 250*0.3e-9 = 7.5e-8 m
Cerebras Timescale = 250000*2e-15*3600*24*30 = 0.0013 s
Frontier Timescale = Cerebras/179 = 7.2e-6 s
Maximum MD length: 
 10000*10000*6*2 = 1.2e9 Ta atoms
 10000*0.3e-9 = 3e-6 m
 Round up to 1e-5m

 

WSE

GPU

§ Molecular Dynamics on Exascale Systems
§ Weak Scaling simulations filling the GPUs with as many atoms as we 

can to simulate several billion or trillion atom systems

§ Grand Challenge: Timescale limitation

§ MD requires femtosecond timestepping whereas as important 
physical phenomena happen in 100 microseconds

§ Month long exascale runs for few microseconds of  simulated 
time

§ Latency limitations on exascale systems

§ What we need? 
§ Communication bandwidth comparable to compute throughput
§ Communication latency comparable to clock frequency
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Molecular Dynamics on Wafer Scale Engine

Can we accelerate Molecular Dynamics using Cerebras 
WSE?

Key questions for our co-design efforts:
§ Can we do strong scaling can we accelerate timesteps per 

second to what can be achieved on an exascale system?
§ Can we study and understand the performance on a data flow 

hardware?
§ What are the energy benefits for using a WSE?

Gordon Bell  Submission 2024 under 
review
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1

Ti
m
e

QM
MD

CM

10-14 s

100 s

10-10 m Length 10-2 m

Comparison of maximum MD timescale achievable using 
Cerebras Wafer-Scale Engine (WSE, green) and Exascale 
GPU hardware (GPU, gray). The boxes represent typical 
achievable ranges of length and time using different 
materials simulation approaches: quantum electronic  
methods (QM, left inset), molecular dynamics (MD, right 
inset) and continuum mechanics (CM).  Green and gray 
stars reflect measured performance for 800,000 Ta atoms 
(Fig. 2), assuming 30 days of wall-clock time on WSE and 
GPU hardware, respectively, The nearly 180-fold increase in 
maximum achievable timescale for MD using WSE is 
transformative for a broad range of applications in materials 
science, chemistry, and physics.

Assumptions: 
256*261*6*2 = 801792 Ta atoms
Length scale = 250*0.3e-9 = 7.5e-8 m
Cerebras Timescale = 250000*2e-15*3600*24*30 = 0.0013 s
Frontier Timescale = Cerebras/179 = 7.2e-6 s
Maximum MD length: 
 10000*10000*6*2 = 1.2e9 Ta atoms
 10000*0.3e-9 = 3e-6 m
 Round up to 1e-5m

 

WSE

GPU
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Early Results: Molecular Dynamics on Wafer Scale Engine

Key results:
§ 179x speedup compared to best time achieved on Frontier simulations and 55x faster than best CPU times
§ One-to-two orders of  magnitude energy efficiency compared to CPUs and GPUs
§ Extreme strong scaling of  one atom per-core used. Could go further down to one atom for many cores
§ Simulation of  120 microseconds/day at 5 fs timestep 
§ A simple performance model allows us to project performance up to 3% accuracy

Exciting Results using the Wafer Scale Engine on a traditional 
scientific simulation

20
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§ Two examples from the Exascale efforts
§ Two orders of  magnitude improvement with new algorithms that map well to hierarchical 

parallelism, new memory layouts, and application needs
§ Not so much performance benefit using multiprecision if  we want to retain the accuracy

§ Two examples from the post-exascale co-design efforts
§ Huge upside for HPCG performance based on performance projections
§ 179x speedup on molecular dynamics compared to Exascale systems

§ HPC community is very good at using whatever the hardware architects give us
§ We will join the AI hardware swim lane instead of  beating them with the custom hardware 

swim lane

Summary



Additional information
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• Contact: srajama@sandia.gov
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