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=  Context on Exascale and current work

* Two examples from Exascale work
* Batched Sparse Solvers

*  Multiprecision

" Two examples from post-Exascale work
= HPCG on data flow hardware
" Molecular Dynamics on data flow hardware
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/ Exascale Landscape
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/" View of HPC since 2003: Change is the only constant
’/ 2005:

First version of Kokkos
proposed by Mike

g

Heroux
Start considering GPUs 201 2 second NNSA AT%M . ECP begins
as GPGPUs, BrookGPU version of program pbegins
I ' Kokkos
2003: Optimize 2010:;: 2014: Serious work in 2015: Third rebirth of
for multithreaded Several new linear linear a|gebra U.SII’]g Egﬁ:gz iooii%ss
CPU performance algebra algorithms for GPUs alnd multicore '
GPUs, Garland and Bell CPUS linear solvers ecosystem
SpMV

Almost two decades since the first set of “general purpose” kernels

on HPIs to applications running at scale
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// Algorithm Design for Exascale Hardware
/

~ 0. Identify performance critical kernels
= Call library based option when possible

= Allows library developers to optimize the kernels

1. Develop portable algorithms when library based option not available
= Use a portable programming model
= Use architecture independent abstractions

= Pay attention to memory layouts, hierarchical parallelism, synchronization costs

2. Expose more parallelism with new algorithms
" Edge-based, Non-zero based algorithms, Block-based algorithms, Clever use of sparsity etc.

3. Use team level data structures and linear algebra kernels when possible

" Optimize performance at all the hierarchical levels

Linear algebra community is very good at adapting to changes in
hardware and to application needs ‘




//Performance Portable Batched Sparse Solvers w/ Kim Liegeols, and L. Berger-Vergjat
74

/ Motivation: Numerical strategies for solving PDEs can

%
lead to large number (N) of small (n) similar sparse
n
I |
A

linear systems to be solved independently (N >> n)

" (X)= B

Two vendor strategies:
1. Loop over N systems, solve each with vendor sparse 10° 5
solver (slow)

=== cusolver sparse == cusolver batched dense

o o o o
o o
-
—

10-1 ] Out of
memory
]0—2 i

2. Convert all systems to dense and use batched dense
solver if available (high-memory footprint) -> This
is what the community has been focused on for 6-
7 years

Wall clock time [sec]

No good options that can satisfy performance needs

and be robust
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//New Strategy for Batched Sparse Krylov

e N systems gathered into groups of m
systems m << N
* E.g., on new Intel CPU architectures,
one can use m=8 and solvers can
use vectorization to solve the group
of systems at the team level.
* Hierarchical parallelism to solve m
systems using a sparse iterative solver
at team level

Batched sparse solvers implemented
using performance portable batched
kernels at team level

One group/team per color.

Cool but crazy idea: Implementing a
sparse Krylov solvers to solve many
small systems with ~100 of kB!!




//Batched Sparse Solver (GMRES) Performance Results
1072 V100 MI50

e cuSOLVER sparse QR (i) cuSOLVER sparse block QR (iii) P k‘?fthU"SOVtEd
cuSOLVER batched dense (ii) Batched GMRES (iv) —5-  Right unsorted
2 —*—  Left sorted
s~ —° =% Right sorted
10! ;’ ------------ -== Ginkgo
7
2 107 - 924X AG4FX Isooctane matrices:
(D) 1
E 107" 5 — > n=144,
= E 9 0
1072 5 = » 29.59% dense,
1 2
10—3 ‘ : : : : i » the GMRES
50 100 150 200 250 300 : s converges In up
Number of rows 0 5000 10000 15000 20,000 0 5000 10,000 15000 20,000 Fo 17,
Iterations.

Number of matrices Number of matrices

Batched GMRES can solve larger problems than ‘ ‘
batched dense solver from NVIDIA due to reduced Performance portable to other architecture (same algorithm,

memory different hyperparameters such as m)

Team batched sparse solvers efficient use of GPU resources yields two

order magnitude speedup versus sequential use of sparse solvers
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/" Multiprecision for Linear Solvers PI. 5. Rajaranickam

Team: Boman, Loe, Glusa, Yamazaki

/ Roundoff Error and the Patriot Missile 1/18/11 8:42 AM

4 *  Multiprecision hardware is becoming more common Roundoff Error and the Patriot Missile

Robert Skeel

*  Avoid issues such as the 1991 roundoff error on Partiot
. . The March 13 issue of Science carried an article claiming, on the basis of a report from the General
mis Slle Accounting Office (GAO), that a "minute mathematical error ... allowed an Iragi Scud missile to slip
through Patriot missile defenses a year ago and hit U.S. Army barracks in Dhahran, Saudi Arabia, killing 28

servicemen." The article continues with a readable account of what happened.

« . .
° Hence, Wlth a leSS accurate truncated time Of one radar The article says that the computer doing the tracking calculations had an internal clock whose values were
. . slightly truncated when converted to floating-point arithmetic. The errors were proportional to the time on

pulse belng Subtracted from a more accurate time Of the clock: 0.0275 seconds after eight hours and 0.3433 seconds after 100 hours. A calculation shows each of

these relative errors to be both very nearly 220, which is approximately 0.0001%.
another radar pulse, the error no longer cancelled.”

The GAO report contains some additional information. The internal clock kept time as an integer value in
units of tenths of a second, and the computer's registers were only 24 bits long. This and the consistency in

: . : : ot the time lags suggested that the error was caused by a fixed-point 24-bit representation of 0.1 in base 2. The
°
Sparse 11near SOIVEI‘S . 64’_b1t accuracy Wlth IOWCI‘ preCISlon or base 2 representation of 0.1 is nonterminating; for the first 23 binary digits after the binary point, the value is
: s 0.1 x (1 -22%). The use of 0.1 x (1 - 2°2%) in obtaining a floating-point value of time in seconds would
multlpf@ClSlon cause all times to be reduced by 0.0001%.

*  Option 1: GMRES-IR

* Inner iterations using lower precision

. . . .. A Survey of Numerical Methods Utilizing Mixed
¢ Iterative refinement using higher precision Precision Arithmetic

by the ECP Multiprecision Effort Team (Lead: Hartwig Anzt)

* Option 2: Lower precision preconditioners and higher
precision solvers

‘Ahmad Abdelfattah', Hartwig Anzt'?2, Erik G. Boman®, Erin Carson®, Terry Cojean?, Jack
Dongarra!>5, Mark Gates!, Thomas Griitzmacher?, Nicholas J. Higham®, Sherry Li®, Neil
Lindquist', Yang Liu®, Jennifer Loe?, Piotr Luszczek', Pratik Nayak?, Sri Pranesh®, Siva
Rajamanickam®, Tobias Ribizel?, Barry Smith®, Kasia Swirydowicz!?, Stephen Thomas!?,
Stanimire Tomov', Yaohung M. Tsai', Ichi Yamazaki®, Urike Meier Yang”

University of Tennessee, Knoxville, USA
ZKarlsruhe Institute of Technology, Karlsruhe, Germany
3Sandia National Lab, Albuquerque, USA
“Charles University, Prague, Czech Republic
50ak Ridge National Lab, Oak Ridge, USA.
SUniversity of Manchester, Manchester, UK
7Lawrence Livermore National Lab, USA
SLawrence Berkeley National Lab, Berkeley, USA
9 Argonne National Lab, Argonne, USA
10 National Renewable Energy Lab, Boulder, USA

Can we get the higher performance offered by

multiprecision hardware without sacrificing
accuracy?

1674v1 [cs.MS] 13 Jul 2020




/" Multiprecision for Linear Solvers
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’ Prei%gnditioned Linear Solver Convergence Stretched2D1500
& 0| ~a— Double Prec], *  GMRES-IR = GMRES with iterative refinement. Run
g 1072} —8— Single Prec [ S : :
5 10| GMRES IR | GMRES + preconditioning in FP32, refine in FP64 to get
=—— | double-precision accuracy.
5 s
° 1077 F b . .
g o) | ¢ Convergence typically follows double precision GMRES!
g 1077 1 . . ..
£ o8k | *  Can also run GMRES-IR with single precision
2 1070 1 preconditioning, This §Xample: Polynomial preconditioning of
13711 I ‘ ‘ ‘ ‘ . degree 40 for a Laplacian.
0 100 200 300 400 500

Number of Iterations

25Solver Timings Stretched2D1500 Poly Prec

I Orthogonalization
& SPMV
EEE Other

* About 30% speedup over all-double precision.

¢ Trilinos options to use single precision preconditioning
with double precision solver.

Time [s]

Iterative solver benefits for multiprecision is

Double Single IR Single
= Prec Prec Prec
marginal. Solve Type




/" Post-Exascale: Data flow path feels the same way it felt in 2005
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e - Data flow is not a new idea
- Data flow hardware as it exists today is different from what has been considered
in the past
] 2022: NNSA AMT 2023: NNSA AMT
2019: Office of Phase 1 start Phase 2 start
Science ARIAA start (Cerebras), Co- (Cerebras)
design with
SambaNova |
Some work focused on Early research on on fth .
'80s and ‘90s: Mostly ignored during the Al accelerators: sparsity on the academic  sparsity and accelerators ~ >Late of theartin
d ) decade of the GPUs Everiss. MAERI SIGMA, TPU side (SIGMA). Several early commercial hardware'
Several data flow YErss, ' ' industry hardware emerge. Several hardware choices,
algorithms vendor toolchain just

beginning to emerge,
Focus mainly on dense ML

Recent work focuses primarily on use cases for machine learning,

however promising path for traditional science simulations




/" Turning the Titanic with a Leaf-blower: Influencing future hardware design
5 Motivation : How can DOE /SNL use developments in industry and computer architectures to

accelerate AI/HPC workflows?

* Therte ate a large number of AI/HPC companies
producing specialized hardware.

cerebras

* Computer architecture community has been focused
on data flow acceleration for several years.

* Quantify the benefits of data flow hardware for DOE
/ SNI. mission using simulations and mini-applications
on early hardware

Cloud TPU v3
420 teraflops

* Three parallel efforts
* Advanced Memory Technologies — Cerebras

¢ ASC CSSE Co-design — SambaNova (not part of this talk)
* Vanguard - II / Spectra — NextSilicon (not part of this talk)

Successful co-design with industry could lead to accelerating new classes of applications and

low-energy accelerator alternative for other classes of applications




‘,/ Data flow Architectures are emerging as an alternative to traditional
! accelerators

- & * The primary architectural features that distinguish “spatial” or “data Global EE
Buffer *E mm

ALU je== fetch data to run
a MAC here

flow” accelerators for ML from CPUs and GPUs are

Normalized Energy Cost

* parallelism using hundreds to thousands of processing elements (PEs)

ALU 1x (Reference)

* a fast network-on-chip connecting these and 05-1.0k8 [EH—{A0]

NoC: 200 - 1000 PEs | PE | ALU

* use of private/shared scratchpad buffers for data reuse. 100- 500 k8 [EXE———1ALU]
DRAM ALU N 200x

* Differences from GPUs

* PEs communicate using Network-On-Chip (NOCs) without register file Nome Cee (o e e e el e peeie]
¢ Spatial/ Temporal /Spatio-temporal data reuse benefits in energy cost

Data flow architectures enable a
high-risk, high-reward path to
accelerate HPC and ML applications

Need a rethink of algorithms, applications,

programming models, compiler stack and the hardware
features. Co-design is critical.

Image Courtesy: Hardware for Machine Learning: Challenges and
ACROTER Opportunities, Sze et al. CICC 2017 ﬂ
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Explore co-design of algorithms for

science simulations with a data flow
hardware

Cerebras and NNSA Trilabs Team
Overall AMT Lead: Jim Laros,

'/~ Advanced Memory Technologies - Cerebras Cerebras AMT Lead: Siva

Rajamanickam

Cerebras Wafer scale engine is the largest chip ever built
° 2.6 trillion transistors
° 850,000 Al optimized cores
° 40 Gigabytes of On-chip Memory
° 20 PByte/s memory bandwidth

Al workloads are the primary target for the architecture

Key questions for our co-design efforts:

" How can we map scientific codes (Implicit solvers, Explicit codes,
Monte Carlo, Molecular Dynamics, Unstructured multi-resolution
problems)

" Is a 64-bit WSE possible?
" Implement two selected codes (implicit solvers, molecular dynamics)
= Sandia-led effort with LLLNL, LANL and Cerebras



//Cerebras - HPCG Mapping Co-design

High Performance Conjugate Gradient (HPCG) . . .
o Careful mapping of different domain aspect
benchmark as proxy for implicit solvers

/ ratios to the 2D PE grid

1X1XZ gridpoints per tile

3D Domains Quasi-2D Domains
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Careful mapping of computational

kernels on the grid
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Mapping a sparse scientific code to the WSE is possible through co-design A



P /Cerebras HPCG Performance Projections

WSE Cluster Performance Utilization per Iteration (3D: 1x1xZ with Rebalance)

25 3D Mappings
-e-Total -e-CG MG

100%

20 90%
E 80%
. Fugaku § rox
£ Frontier > %
e & 50%
B (FP64) =
5
o 30%
o
£ 20%

6
5
10%
0%
o - [ ] z=16 7=32 7=64 7=128 7=192 7=256

(15M cells) (30M cells) (60M cells)  (121Mcells)  (182Mcells)  (242M cells)
1 Wafer 2 Wafers 4 Wafers 8 Wafers 16 Wafers 32 Wafers 64 Wafers

WSE Cluster Size .
Compliant with HPCG <8:1 aspect ratio

condition

Assumes non-overlapped |0
with CS-3 bandwidth levels

Simulation studies show potential to achieve ~50% utilization and reach exascale system
performance with small number of wafers.
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Molecular Dynamics simulations are
limited by the timescales we can

simulate using even the entire
exascale system

/IVIoIecuIar Dynamics on Wafer Scale Engine

* Molecular Dynamics on Exascale Systems

" Weak Scaling simulations filling the GPUs with as many atoms as we
can to simulate several billion or trillion atom systems

* Grand Challenge: Timescale limitation

= MD requires femtosecond timestepping whereas as important
physical phenomena happen in 100 microseconds

* Month long exascale runs for few microseconds of simulated
time

= Latency limitations on exascale systems

= What we need?

* Communication bandwidth comparable to compute throughput

* Communication latency comparable to clock frequency
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Breaking the Molecular Dynamics Timescale Barrier
Using a Wafer-Scale System

Kylee Santos*, Stan Moore', Tomas Oppelstrup¥, Amirali Sharifian®, Ilya Sharapov*, Aidan Thompson?,
Delyan Z Kalchev*, Danny Perez®, Robert Schreiber*, Scott Pakin®, Edgar A. Leon?, James H Laros IIT*,
Michael James*, and Sivasankaran Rajamanickam"

*Cerebras Systems, Sunnyvale, CA
*Sandia National Laboratories, Albuquerque, NM
#Lawrence Livermore National Laboratory, Livermore, CA
¥Los Alamos National Laboratory, Los Alamos, NM

Abstract—Molecular dynamics (MD) simulations have trans-
formed our understanding of the nanoscale, driving breakthroughs
in materials science, computational chemistry, and several other
fields, including biophysics and drug design. Even on exascale
supercomputers, however, runtimes are excessive for systems
and timescales of scientific interest. Here, we demonstrate strong
scaling of MD simulations on the Cerebras Wafer-Scale Engine.
By dedicating a processor core for each simulated atom, we
demonstrate a 179-fold improvement in timesteps per second versus
the Frontier GPU-based Exascale platform, along with a large
improvement in timesteps per unit energy. Reducing every year of

> runtime to two days unlocks currently inaccessible timescales of
= slow microstructure transformation processes that are critical for

understanding material behavior and function.
Our dataflow algorithm runs Embedded Atom Method (EAM)

+ simulations at rates over 270,000 timesteps per second for prob-
» lems with up to 800k atoms. This demonstrated performance is

for general-purp
Index Te fer-scale engine, ics, materials,
EAM, strong scaling

Justification for ACM Gordon Bell Prize: Record MD
simulation >270,000 timesteps/s for 800k tantalum atoms using
many-body EAM potential. 179-fold improvement in time to
solution versus Frontier, the #1 GPU system in the world,
while achieving high energy effici i ion of 120
‘microseconds/day at 5 fs timestep. Almost-perfect weak scaling
to nearly one million cores.

101%m 102m

Length

Fig. 1. Comparison of maximum MD timescale achievable using Cerebras

Wafer-Seale Engine (WSE, green) and Exascale GPU hardware (GPU, gray).

The boxes represent typical achievable ranges of length and time using different
‘materials simulation approaches: quantum electronic methods (QM, left box),
‘molecular dynamics (MD, middle box) and continuum mechanics (CM, right
box). Green and gray stars reflect measured performance for 800,000 Ta atoms
(see Fig. 7), assuming 30 days of wall-clock time on WSE and GPU hardware,
respectively. The nearly 180-fold increase in maximum achievable timescale for
MD using WSE is for a broad range of applications in materials
science, chemistry, and physics,

Gordon Bell Submission 2024 under

review

,/IVIoIecuIar Dynamics on Wafer Scale Engine

Can we accelerate Molecular Dynamics using Cerebras
WSE?

Key questions for our co-design efforts:

= Can we do strong scaling can we accelerate timesteps per
second to what can be achieved on an exascale system?

= Can we study and understand the performance on a data flow
hardware?

= What are the energy benefits for using a WSE?

10145




,/Early Results: Molecular Dynamics on Wafer Scale Engine

Vs
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Key results:
" 179x speedup compared to best time achieved on Frontier simulations and 55x faster than best CPU times

* One-to-two orders of magnitude energy efficiency compared to CPUs and GPUs
= Extreme strong scaling of one atom per-core used. Could go further down to one atom for many cores

* Simulation of 120 microseconds/day at 5 fs timestep

= A simple performance model allows us to project performance up to 3% accuracy

Exciting Results using the Wafer Scale Engine on a traditional

scientific simulation
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/" Summary

Two examples from the Exascale efforts
* Two orders of magnitude improvement with new algorithms that map well to hierarchical

parallelism, new memory layouts, and application needs
" Not so much performance benefit using multiprecision if we want to retain the accuracy

Two examples from the post-exascale co-design efforts
* Huge upside for HPCG performance based on performance projections
" 179x speedup on molecular dynamics compared to Exascale systems

HPC community is very good at using whatever the hardware architects give us
*  We will join the Al hardware swim lane instead of beating them with the custom hardware
swim lane



/" Additional information
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* Contact: srajama@sandia.gov



