Building Specialized HPC Systems with Composable Chiplets

Salishan Conference April 22 -25, 2024

Andreas Olofsson Zero ASIC andreas@zeroasic.com

About me

1998-2006	2006-2008	2008-2017	2017-2020	2020-()
Analog Devices	Analog Devices	Adapteva	DARPA	Zero ASIC
VLIW DSPs High Complexity Custom Logic 100 eng/chip	Camera ASICs Custom RISC 3 eng/chip (+support)	Parallel DSPs Custom RISC Parallella, Epiphany 1-3 eng/chip	EDA/Design Chiplets Goal: 1 eng/chip	Chiplets Goal: 0 eng/chip

From my Salishan 2018 Silicon Compiler Presentation

	General Purpose (ref Dally, Kogge)	Scientific Machine (ref. Anton)	Machine Learning (trust me*)
OPS (Exa)	1	1	1
Memory (TB)	3,600	100	10
Power (MW)	68	2	0.2
Cost	\$500M	\$10M	\$2M

*\$4/GB DRAM, 5 TOPS/W, shared MPW, IDEA/POSH working, market silicon pricing at 14nm

Talk Outline

- 1. Troubling trends
- 2. Semiconductor economics 101
- 3. Chiplets to the rescue
- 4. Composable chiplets
- 5. Chiplet infrastructure
- 6. Chiplet examples
- 7. Chiplets for HPC

Troubling Trends

The existential question....where will the next 1,000,000,000X come from?

"Business-as-Usual Will Not Be Adequate"

We all know what happens for $\lim_{x\to 0^+}(1/x)$, right?

(or)

Pessimist

Optimist

Derivative: Escalating Fab Costs

REF: McKinsey

Derivative: Escalating Mask Set Costs

Process complexity manifests itself as mask cost + unit cost increases.

Derivative: Escalating Wafer Pricing

Cost per Wafer vs. Node

\$250K - \$500K per FOUP!

Derivative: Transistor Costs are Saturating

Porting to the next node no longer automatic...

Derivative: Escalating Design Costs

Design efficiency improvements have not kept pace with Moore's Law!

Cost =~ mx+b

x = functions m = \$/function b = minimum cost (masks sets,qual,..)

Important Existential Questions

- How much more computing performance do we actually need?
- Is the current cost of ASIC design actually a problem?
- What happens to the global economy when Moore's Law dies?
- What happens when chip design cost/time approaches zero?

Semiconductor Economics 101

Breaking Down Chip Design Cost

* MPW drives up unit cost by 10-100X

**Chiplets assume mix and match catalog

Breaking Down Chip Unit Costs

Breaking Down Chip Design Time

Chiplets to the Rescue

DARPA CHIPS (2016)

REF: DARPA @ Semicom Design West 2019

Extend Moore's law Scale out and scale down while managing yield

Enable heterogeneous integration aterials/processes_companie

Materials/processes, companies, geography, security

- A universal efficient interface standard
- SOTA manufacturing assembly
- ✓ A large and critical set of IP chiplets

Empower system integrators Democratize access to leading edge silicon for system integrators

Chiplet Status Report

		DARPA	Apir Lade TouSHY' Chysiels Held [®] Static [®] 10 FPGA				
2012	2015	2016	2019	2019	2021	2021	2023
Xilinx SSI (2.5D)	AMD FIJI (2.5D)	DARPA CHIPS Program	Intel/Ayar Photonics (2.5D)	AMD Epyc (2D)	Intel Ponte Vecchio (3D)	AMD VCACHE (3D)	AMD MI300 (3D)

- Focused on unit cost (yield) and performance
- Closed ecosystems and limited reuse/composability

Lockheed Martin Chiplet Study

"A multi-year study showed that approximately 90% of defense modules can be developed using just 7 types of chiplets" –Lockheed Martin (distro A)

Opportunity: Flattening the \$2T Electronics Market

IP Foundry

Chiplets expands the semiconductor market by lowering the barrier to innovation

Critical Chiplet Question?

- What is the chiplet tax (cost, energy, performance)?
- What functions are needed to cover most applications?
- What is the optimal chiplet size?
- What is the optimal packaging technology?
- When will the tipping point come for chiplets?

Composable Chiplets

Chiplets: The New Amino Acids of Silicon Systems

"Finite investment, infinite possibilities"

Mix-and-Match Composability Math

	Repeats Allowed	No Repeats
Permutations (order matters)	n ^r	n!/(n-r)!
Combinations (order doesn't matter)	(r+n-1)!/r!(n-1)!	n!/r!(n-r)!

n=20, r=16	Repeats Allowed	No Repeats
Permutations	6.55E+20	1.01E+17
Combinations	4.06E+09	4.85E+03

Our Approach: Composable system of "LEGO" chiplets

eFabric Cross Section

Active silicon interposer with TSVs, 45um 3D microbumps, 110um IO bumps, organic interposer, matched height silicon stacks

Chiplet RFC #1: Mechanical standards for Chips

Key Decisions

Min Size: 1 mm² is 100MTr (good size) Space: 100um chiplet space (manufacturing) Logistics: Typical MPW sizes ~2x2

Name	Size	
X1	0.95mm	
X2	2mm	
Х3	3.05mm	
X4	4.1mm	
X5	5.15mm	

Chiplet RFC #2: Fixed footprints for chips

A	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	P	Q	R	S	Т	U
45	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Α		NIO15	NIO14	NIO13	NIO12	NIO11	NIO10	NIO9	NIO8	VSS	NIO7	NIO6	NIO5	NIO4	NIO3	NIO2	NIO1	NIO0		-405
В	EIO0	VSS	NAN1	VSS	NVCC	NPTN0	NPTP0	VSS	NNC0	NNC1	NNC2	VSS	NPTP1	NPTN1	NVCC	VSS	WANO	VSS	WIO0	-360
С	EIO1	NANO	NVDDA	TX0	TX1	TX3	TX6	TX9	TX13	EN3D	RX13	RX9	RX6	RX3	RX1	RX0	WVDDA	WAN1	WI01	-315
D	EIO2	VSS	RX48	VDD	TX2	TX4	TX7	TX10	TX14	VSS	RX14	RX10	RX7	RX4	RX2	VDD	TX16	VSS	WIO2	-270
E	EIO3	EVCC	RX49	RX50	VSS	TX5	TX8	TX11	TX15	VDDX	RX15	RX11	RX8	RX5	VSS	TX18	TX17	WVCC	WIO3	-225
F	EIO4	EPTN1	RX51	RX52	RX53	VSS	TXS0	TX12	TXC0	VSS	RXC0	RX12	RXS0	VSS	TX21	TX20	TX19	WPTN0	WIO4	-180
G	EIO5	EPTP1	RX54	RX55	RX56	RXS3	VDD	VSS	VDD	STAT0	VDD	VSS	VDD	TXS1	TX24	TX23	TX22	WPTP0	WIO5	-135
H	EIO6	VSS	RX57	RX58	RX59	RX60	VSS	VDD	VSS	CTRL0	VSS	VDD	VSS	TX28	TX27	TX26	TX25	VSS	WIO6	-90
J	EIO7	ENC2	RX61	RX62	RX63	RXC3	VDD	VSS	VDD	CLK0	VDD	VSS	VDD	TXC1	TX31	TX30	TX29	WNC0	WIO7	-45
K	VSS	ENC1	ENC3	VSS	VDDX	VSS	STAT3	CTRL3	CLK3	NRST	CLK1	CTRL1	STAT1	VSS	VDDX	VSS	WNC3	WNC1	VSS	0
L	EIO8	ENC0	TX61	TX62	TX63	TXC3	VDD	VSS	VDD	CLK2	VDD	VSS	VDD	RXC1	RX31	RX30	RX29	WNC2	WIO8	45
Μ	EIO9	VSS	TX57	TX58	TX59	TX60	VSS	VDD	VSS	CTRL2	VSS	VDD	VSS	RX28	RX27	RX26	RX25	VSS	WIO9	90
N	EIO10	EPTP0	TX54	TX55	TX56	TXS3	VDD	VSS	VDD	STAT2	VDD	VSS	VDD	RXS1	RX24	RX23	RX22	WPTP1	WIO10	135
Ρ	EIO11	EPTN0	TX51	TX52	TX53	VSS	RXS2	RX44	RXC2	VSS	TXC2	TX44	TXS2	VSS	RX21	RX20	RX19	WPTN1	WIO11	180
Q	EIO12	EVCC	TX49	TX50	VSS	RX37	RX40	RX43	RX47	VDDX	TX47	TX43	TX40	TX37	VSS	RX18	RX17	WVCC	WIO12	225
R	EIO13	VSS	TX48	VDD	RX34	RX36	RX39	RX42	RX46	VSS	TX46	TX42	TX39	TX36	TX34	VDD	RX16	VSS	WIO13	270
S	EIO14	EAN1	EVDDA	RX32	RX33	RX35	RX38	RX41	RX45	SNC3	TX45	TX41	TX38	TX35	TX33	TX32	SVDDA	SAN0	WIO14	315
Τ	EIO15	VSS	EAN0	VSS	SVCC	SPTN1	SPTP1	VSS	SNC2	SNC1	SNC0	VSS	SPTN0	SPTP0	SVCC	VSS	SAN1	VSS	WIO15	360
U		SIO15	SIO14	SIO13	SIO12	SIO11	SIO10	SIO9	SIO8	VSS	SIO7	SIO6	SIO5	SIO4	SIO3	SIO2	SIO1	SIO0		405
V	-405	-360	-315	-270	-225	-180	-135	-90	-45	0	45	90	135	180	225	270	315	360	405	

45um bump pitch	Symmetrical footprint	Passthrough Signals	Multiple clocks
64 bit parallel I/O	Multiple power rails	4 Analog domains	Sideband channel

Chiplet RFC #3: Universal Memory Interface

Everything is memory	Open source	Packet Based	Low Latency/High Perf
Optimized for chiplets	Latency Insensitive	Built-In Atomics	Bridges to AXI, TileLink

https://github.com/zeroasiccorp/umi

Chiplet RFC #4: A lightweight electrical interface

- UCle specification (v1.1)
 - GF12LP
 - Up to 8GT/s maximum, 16b wide
 - Tightly coupled mode only
 - Designed to UCle FDI/RDI interface
- Universal Memory Interface protocol
- Simulated using open source tools (Verilator, Xyce, lcarus, and Switchboard)

Standards

Perception

10 Year Plan: Built-To-Order Custom Silicon in 24hrs

Substrate Inventory

Standardized automation is the only way to fix the broken economics of on-shore low-volume-high mix manufacturing ³⁵

Chiplet Infrastructure

SiliconCompiler: Automating chiplet layout

https://github.com/siliconcompiler

\$ pip install --upgrade siliconcompiler \$ sc -target asic_demo -remote

٠

SiliconCompiler Results

	GOTLAND	MAUI	KODIAK
TYPE	CPU	FPGA	MEMORY
TECHNOLOGY	GF12LP	GF12LP	GF12LP
SIZE	2 x 2 mm	2 x 2 mm	2 x 2 mm
ORIGIN	UCB - ROCKET	ZA	ZA
METRIC	Quad Core RV64GC CPU	_	3MB
DESIGNERS	2	2	2
WALL TIME	< 3 weeks	< 8 weeks	< 8 weeks
RUN TIME	< 24hrs	< 24hrs	< 24hrs

Switchboard: Addressing the Chiplet Validation Problem

- Heterogeneous simulation framework
- Latency insensitive protocol (ready/valid)
- Fast shared memory queues
- Supports RTL, FPGAs (HIL), SW models)
- UMI implementation
- Python bindings
- 10x faster than commercial emulators
- Deployed in AWS
 - 0.2us host latency
 - 4us host-fpga latency
- github.com/zeroasiccorp/switchboard
- Demo: <u>zeroasic.com/emulation</u>

Chiplet Examples

Quad-Core RV64GC CPU

- Quad-core RISC-V RV64GC cpu cluster
- In-order dual-issue pipeline
- 32KB L1 instruction cache
- 32KB L1 data cache
- 1MB L2 cache
- L2 cache can be reconfigured as scratchpad
- 3.6 CoreMarks/MHz
- Up to 1.5GHz core operating frequency
- On-chip general purpose DMA
- UMI/UCIe I/O ports
- Standard I/O Peripherals
- Open source toolchain/demo:
 - (see RV eco-system)
 - <u>zeroasic.com/emulation</u>
- GF12LP process
- 2mm x 2mm

26K LUT Heterogeneous FPGA

- 26K LUTs
- 512KB BRAM
- 128 MACs
- Open source toolchain/demo:
 - github.com/zeroasiccorp/logik
 - zeroasic.com/emulation
- UMI/UCIe I/O ports
- GF12LP process
- 4mm x 4mm

Design	4-LUTs	Flip Flops
picoRV32	3974	1001
UART	217	79

3 TOPS ML Accelerator

- 3 TOPS INT8 AI accelerator
- Hardware accelerated ReLU/Softmax nonlinearities
- Hardware accelerated transpose
- 512KB on-chip buffers
- RISC-V RV64GC CPU
 - 16KB L1 instruction cache
 - o 16KB L1 data cache
- UMI/UCIe I/O ports
- Standard I/O Peripherals
- Demo:
 - zeroasic.com/emulation
- GF12LP process
- 2mm x 2mm

UART

CLINK

DMA

Chiplets for HPC

Advice: Start small....

Example: Composable FPGAs

	Current	Composable
Min Area	952 mm^2 (est)	4 mm^2
Min Power	10 W (est)	< 1 W
Project Cost	N/A	\$100K
Project Wall Time	N/A	3 months

Moore's Law \rightarrow Olofsson's Law*

"The number of chiplets in a package will double every two years."