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HPC and AI relationship
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Source: Prof. Morris Riedel  – Univ. Iceland & FZJ-JSC

http://www.iconarchive.com/show/aesthetica-2-icons-by-dryicons/database-process-icon.html
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Growth in Training Computation (1980-2023)

Adapted from: Charlie Giattino, Edouard Mathieu, Veronika Samborska and Max Roser (2023), ourworldindata.org

https://ourworldindata.org/artificial-intelligence
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Growth in Training Computation (2010-2022)

Source: Sevilla et al. IJCNN 2022, https://doi.org/10.1109/IJCNN55064.2022.9891914

AlphaGo

• 2015: a new trend of 

large-scale models

• Computational 

capacity significantly 

higher (e.g., AlphaGo) 

than other models 

published in the same 

year 

• Slower growth than the 

overall DL trend

- doubling time 

~8-17 months

https://doi.org/10.1109/IJCNN55064.2022.9891914
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• Strong trend towards FMs trained on extensive domain-agnostic datasets, 

using:

- unsupervised learning

- self-supervised representation learning, 

- multimodal learning

• Deliver more robust insights and decision-making, and bring advances in:

- Mainstream problems, e.g.: Natural Language Processing (NLP), Computer Vision 

- But also to many scientific fields, e.g. Earth observation [Jakubik et al, 2023]. 

New Trends in AI-Foundation Models (FMs)

https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M
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Foundation Models

• Large deep learning models trained 

on a vast amount of data at scale

- by self-supervised learning, or 

- semi-supervised learning

• They can be adapted to a wide 

range of downstream tasks

• Early examples of foundation models

- pre-trained large language models, 

- e.g., GPT foundation models
Source: Jay Alammar, How GTP3 works

http://jalammar.github.io/how-gpt3-works-visualizations-animations
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How to create a Foundation Model?

1) Gather data at scale

2) Train model once and evaluate  

3) Fine-tune model for multiple downstream tasks 

4) Inference (operational)
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• d

1). Gather Data at Scale

Source: Landsat with Sentinel - Global Coverage, NASA SVS,https://svs.gsfc.nasa.gov/4745

E.g., NASA’s Harmonized 

Landsat Sentinel-2

https://svs.gsfc.nasa.gov/4745
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• d

High Performance Computing

2). Train Foundation Model once and Evaluate 

Big Data

Satellite Image Time Series

Trained model

E.g. transformer

MAIN 
TRAINING
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3). Fine-tune model for multiple Downstream Uses 

• d

High Performance Computing
Cloud Computing, 

Computing workstations

Fine-tuned model

FINE
TUNING

Data

for specific 

events

Big Data

Satellite Image Time Series

Trained model

E.g. transformer

MAIN 
TRAINING
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• d

4). Inference Downstream Task: flood mapping

Flood detection Flood impact

Maskey, et al., IEEE GRSM 2023, https://doi.org/10.1109/MGRS.2023.3302813

https://doi.org/10.1109/MGRS.2023.3302813
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GPT-3: Time Required for Full Training 
175 Billion weight parameters

• 1× Nvidia Ampere100 ≈ 90 years

• 1× Nvidia Hopper100 ≈ 15-30 years

• 2,000× Nvidia Ampere100 ≈ 16 days 

(if scaled well on JUWELS Booster)

JUWELS Booster @ Jülich
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GPT-4: Time Required for Full Training 
1,8 Trillion weight parameters

• 1× Nvidia Ampere100 ≈ 1,200 years

• 1× Nvidia Hopper100 ≈ 200-600 years

• 2,000× Nvidia Ampere100 ≈ 900 days 

JUWELS Booster @ Jülich



Suarez – 2024 16

JUWELS BOOSTER • Benchmark: NVIDIA‘s submission

to MLPerf Training v0.7

• Metric: Throughput in Samples/sec

• 5 Benchmarks on up to 1536 GPUs

• Reference: NVIDIA‘s results on 

Selene 

Benchmark Result

n: number of GPUs

Example
• Task: Train ResNet50 on ImageNet
• GPUs: 1536
• Throughput: 1.7 Million images / sec
• Training complete after 43 seconds!
• Parallelization efficiency: 40%

Source: Kesselheim et al. ISC 2021

https://link.springer.com/chapter/10.1007/978-3-030-90539-2_31
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Deep Learning computational characteristics

Neural Networks
Layered arrangement of differentiable

units (neurons) trained by backpropagation

Deep Learning

Artificial neural networks adapt and learn from 

vast amounts of data

......

......

....

....

• Networks with 100s/1000s layers: 

- each having numerous parameters 

- adjusted during training

• Training models

- parallelisation via data parallelism

- large-scale matrix and tensor operations 

 computationally intensive

- complexity increases exponentially with 

size of the model and the data

- preferred precision Bfloat16
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Deep Learning computational characteristics

• Networks with 100s/1000s layers: 

- each having numerous parameters 

- adjusted during training

• Training models

- parallelisation via data parallelism

- large-scale matrix and tensor operations 

 computationally intensive

- complexity increases exponentially with 

size of the model and the data

- preferred precision Bfloat16

• Accelerators can do this very well

- parallelism  distributed training, 

replicate model on several GPUs

- high memory bandwidth  large data 

volumes

- specialized hardware  cost effective

- reduced precision  higher 

performance
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Training Deep Learning Models Requires Accelerators

• GPUs: generic deep learning hardware 

(parallelizing matrix/tensor operations via 

vectorization) 

• Specialized hardware, eg. 

- ASICs, e.g. TPUs (Google)

- in-memory computing chips

- Graphcore IPU: Colossus MK2, 

- Cerebras Wafer Scale Engine 2 (850k 

cores) Image sources: NVIDIA, Google, 
Graphcore, Cerebras

https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://cloud.google.com/tpu
https://www.graphcore.ai/products/ipu
https://www.cerebras.net/product-chip/
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Increasing Processor Diversity
Different trade-offs in the design  different processing units

Many/Multi-
core CPU

10’s 
strong cores

Accelerators

GPU

1000’s 
functional 

units

FPGA

1.000.000’s  
programmable 

gates

AI 
accelerator

custom ASIC 
implementations 

(e.g. TPUs)

100’s 
vector arithmetic 

units

VPU
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HPC SW Stack Examples

Application
Climate & Meteorology, Drug design, QCD, Astrophysics, Protein 

Dynamics,…

Language C/C++, Fortran, Python, CUDA

Parallel programming MPI, Open MP, Open ACC, CUDA, DSL

Libraries Math libraries, I/O libraries, checkpointing libraries, …

Compilers icc, gcc, llvm

Debuggers TotalView, Allinea DDT, PGI, GNU GDB,…

Performance analysis 

tools
Score-P, Scalasca, Vampir, V-Tunes, Extrae/Paraver,…

Resource 

Management/ 

Job Scheduling
SLURM, Torque/Maui, IBM LSF, PBS pro

File system Lustre, NFS, GPFS, BeeGFS

Cluster Management ParaStation, Monitoring tools, SW installation tools, Containers…

Operating system Linux OS (RedHat, CentOS,…)

Hardware Server, Storage, Switch, Infrastructure

Application 
Layer

Programming 
Environment

Tools

Cluster SW

System SW

Hardware
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AI SW Stack Examples

Application
Climate & Meteorology, Drug design, QCD, Astrophysics, Protein 

Dynamics,…

Language Python

AI Frameworks

PyTorch, TensorFlow, Horovod,…

Math libraries, I/O libraries, parallel libraries…

Resource 

Management/ 

Job Scheduling
SLURM, Torque/Maui, IBM LSF, PBS pro

File system Lustre, NFS, GPFS, BeeGFS

Cluster Management ParaStation, Monitoring tools, SW installation tools, Containers…

Operating system Linux OS (RedHat, CentOS,…)

Hardware Server, Storage, Switch, Infrastructure

Application 
Layer

Programming 
Environment

Frameworks

Cluster SW

System SW

Hardware
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JSC Users
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201 Basic Biological and Medical Research

204 Microbiology, Virology and Immunology

205 Medicine

206 Neurosciences

207 Agriculture, Forestry and Veterinary Medicine

301 Molecular Chemistry

302 Chemical Solid State and Surface Research

303 Physical and Theoretical Chemistry

307 Condensed Matter Physics

308
Optics, Quantum Optics and Physics of Atoms, 

Molecules and Plasmas

309 Particles, Nuclei and Fields

310
Statistical Physics, Soft Matter, Biological Physics, 

Nonlinear Dynamics

311 Astrophysics and Astronomy

312 Mathematics

313
Atmospheric Science, Oceanography and Climate 

Research

315 Geophysics and Geodesy

316 Geochemistry, Mineralogy and Crystallography

318 Water Research

402 Mechanics and Constructive Mechanical Engineering

403 Process Engineering, Technical Chemistry

404
Heat Energy Technology, Thermal Machines, Fluid 

Mechanics

405 Materials Engineering

406 Materials Science

407 Systems Engineering

408 Electrical Engineering and Information Technology

409 Computer Science
6-month Mcoreh EFLOP

JUWELS 1,180 2,24 M
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CPU use

GPU use

Other
Acceler.

Memory
capacity

Memory
bandwidth

Network
bandwidth

App1 App2 App3 App4 App5

How to serve diverse requirements with one single system?

?
Diverse 

Requirements 

Node design
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BACKGROUND

2011-2021: The DEEP projects

• DEEP (2011 – 2015)
- Introduced Cluster-Booster architecture

• DEEP-ER (2013 – 2017)
- Added I/O and resiliency functionalities 

• DEEP-EST (2017 – 2021) 
- Modular Supercomputer Architecture

2021-2024: The SEA projects

• DEEP-SEA
- Software for Exascale Architectures

• Also: IO-SEA, RED-SEA
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MSA

Module 4

Neuromorphic

Module 5

Quantum 

Module 6

Multi-tier 

Storage System

Module 3
Data Analytics 

Module
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Booster

GPU GPU GPU

GPU GPU

GPU GPU
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Cluster

DDR NVM
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Modular Supercomputing 

Architecture

Serve HPC and AI 

applications with 

composable

heterogeneous 

resources

High-scale 

Simulation

workflow

Data 

Analytics

workflow

Deep 

Learning

workflow

• Suarez et al. “Modular Supercomputing Architecture – A Success 

Story of European R&D”, ETP4HPC White Paper. (2022) Available at 

https://www.etp4hpc.eu/white-papers.html#msa. 

• Suarez et al., "Modular Supercomputing Architecture: from idea to 

production", Chapter 9 in Contemporary High Performance 

Computing: from Petascale toward Exascale, Volume 3, p 223-251, 

CRC Press. (2019)

https://www.etp4hpc.eu/white-papers.html#msa
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Modular Supercomputer JUWELS

JUWELS Cluster

Intel Xeon (Skylake) processor

InfiniBand EDR network 

2,500 compute nodes

10 PFLOP/s peak (CPU-based)

JUWELS Booster

AMD EPYC Rome 7402 processor

3,700 NVIDIA A100 GPUs

InfiniBand HDR DragonFly+

70 PFLOP/s peak (GPU-based)

#7#44

Funded through SiVeGCS (BMBF, MWK-NRW)

Entry in Nov’20
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Modular Supercomputing

to Exascale

31

2011

2023

2020

Petascale

2024Pre-Exascale

@ Lux, @It

Pilot systems

2021
2022

2017
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Universal Cluster

>5 PetaFLOP/s (FP64, HPL)

SiPearl Rhea1 (ARM Neoverse Zeus)

• 2 x CPUs per node with HBM2e

• >1,300 nodes

JUPITER Modular Heterogeneous Architecture

Core 

Configuration

Parallel 

High Capacity

Data System

Parallel 

High 

Bandwidth

Flash Module

High Capacity 

Backup/Archive 

System

Interactive 

Computation

and Visualization

Neuromorhpic

Module

EU-Technology 

Enabling Module

Quantum 

Module

Future

Modules

GPU Booster

1 ExaFLOP/s (FP64, HPL)

NVIDIA Grace-Hopper

• 4 x chips per compute node

• 72 cores per Grace CPU

• Hopper H100 GPU with HBM3

• ~6,000 nodes
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Role of Supercomputers

• Big tech companies deploy 

their AI supercomputers 

• Supercomputing now goes far 

beyond traditional scientific 

computing, which was driven 

by large governments 

• Major industries building highly 

specialized supercomputers 

are taking the lead

Sources: Jouppi et al. 2023, Forbes, 

Fabebook, TheSun, Hoefler@ETHZ

https://doi.org/10.48550/arXiv.2304.01433
https://www.forbes.com/sites/jamesmorris/2022/10/06/teslas-biggest-news-at-ai-day-was-the-dojo-supercomputer-not-the-optimus-robot/?sh=22ba4ab780bd
https://ai.facebook.com/blog/ai-rsc/
https://www.thesun.co.uk/tech/5072741/google-nasnet-ai-child-reinforcement-learning/
https://youtu.be/xxwT45ljG4o
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SUPERCOMPUTING EVOLUTION

• 1940 – 1950: first computers are Supercomputers (specialized, expensive) 

• 1960 – 1980: vector computers dominate HPC, 

while general purpose computers come to market at much lower prices
– Focus: floating operations (linear Algebra)

– Special purpose technologies (fast vector processors, parallel architectures)

– Only few machines produced  expensive!

• 1990 – 2000: cluster computers are born
– Integrate general purpose CPUs in HPC  more economic approach

– Many „computers“ connected through fast network 

– Distributed memory  MPI

• 2010 – 2020: heterogeneous cluster systems
– CPU + Accelerator technologies (mostly GPUs)  more FLOPS/Watt

– Intel / AMD + NVIDIA / AMD / Intel

• 2020 – today: very large GPU-based systems in HPC,

while hyperscalers dominate AI-market, drive GPU design (and price), 

and build their own processors for their clouds

Architecture paradigms
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Which are the options for HPC?

A) Build own technology, e.g. Fugaku

• Challenges:

- Multi-year, multi-million investment, 

not possible for every HPC site

o Will chiplet designs help?

o Will free-licence ISAs (RISC-V) help?

B) Adapt to AI market

- Use same hardware

- Ok for AI-training workloads

- HPC workloads must be ported

• Challenges:

- Reduced precision

o can legacy HPC codes adapt?

- HPC is needed for training:

o what when inference grows over training?

- Hardware accessibility: 

o will hyperscalers sell their processors?

S
o
u
rc

e
: 

R
IK

E
N

or

https://www.riken.jp/en/news_pubs/news/2020/20200623_1/
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A) Build Own Technology: using chiplets
Towards chiplet-based designs

Monolithic Die

Package

Interposer

chiplet

core

Package

Monolithic Chip

Multiple Dies – 2D/2.5D
(homogeneous chip)

Multiple Dies – 3D 
(heterogeneous chip)

Package

Interposer
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A) Build Own Technology: with licensable ISA

• Rely on well supported software environment

• Several companies with HPC products already

- Fujitsu: A64Fx

- NVIDIA: Grace

- Amazon: Graviton

• +: Good software basis, low portability effort

• - : High licence costs
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A) Build Own Technology: with open ISA

• Open Instruction Set Architecture (ISA) – BSD licence

• Rich development community in industry and 

academia

- Open standard enables new players bring new ideas

- Used mainly in low-power embedded market

- But also HPC designs are in development (e.g. supporting 

scalable vector formats (RVV; similar to Arm SVE)

• +: Lowers entry barrier (cost) for new developments

• - : Lacks software support, danger of ‘proliferation’
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B) Adapt to the trends in AI market

• Computer Technology and Architecture perspective

- Integrate new developments into HPC environment (e.g. with MSA)

- Enter in co-design with new players in chip development

o Both new start-ups and hyperscalers

• Application and Programming environment perspective

- Further develop and rely on portable programming models (e.g. Kokkos)

- Heavily invest on software engineering for applications

o Maybe Foundation Models can help in code porting

- Develop/Adapt algorithms for mixed/lower precision
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Which are the options for HPC?

A) Build own technology B) Adapt to AI marketand


