

HPC Processing Technology in the AI Era

22.04.2024 I SALISHAN 2024 I Bernd Mohr (FZJ-JSC)

Based on input from G.Cavallaro, E.Suarez, S.Kesselheim, A.Lintermann (all from FZJ-JSC)

Mitglied der Helmholtz-Gemeinschaft

A BIG THANK YOU TO ...

- Prof. Dr.
 Estela Suarez
- Co-Lead of JSC Division Novel System Architecture Design
- Head of RG
 Next Generation
 Architectures and
 Prototypes

- Dr. Stefan
 Kesselheim
- Head of SDL Applied Machine Learning
- Head of AI Consultant Team

- Dr. Andreas Lintermann
- Head of SDL
 Highly Scalable
 Fluids & Solids
 Engineering
- Coordinator of CoE RAISE

- Prof. Dr. -Ing.
 Gabriele Cavallaro
- Head of SDL Artificial Intelligence and Machine Learning for Remote Sensing

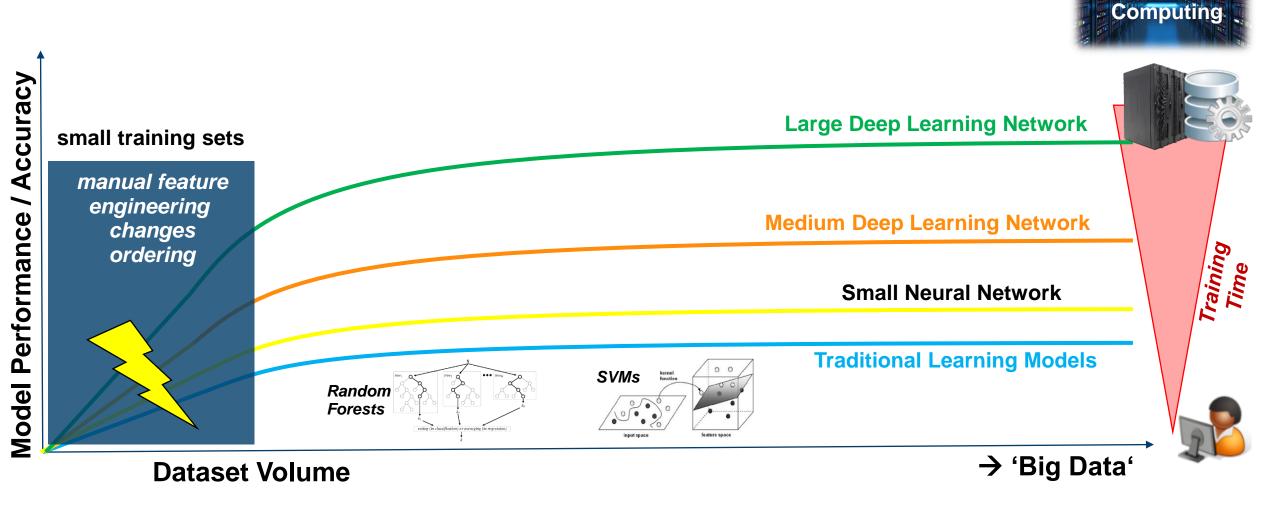
2

OUTLINE

- AI in HPC
- Al computational requirements
- How to fit both AI and HPC users?
- HPC processing technology in the AI era

HPC and AI relationship

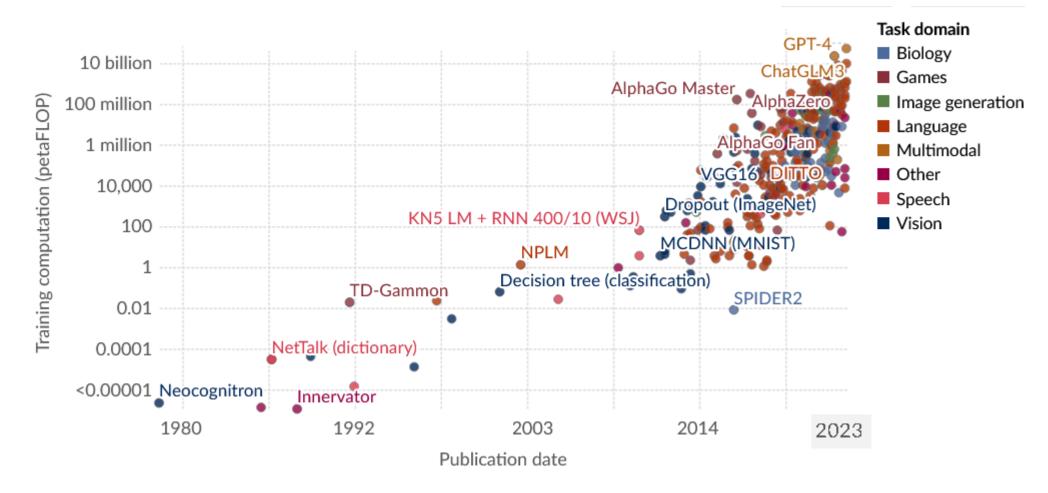
Source: Prof. Morris Riedel – Univ. Iceland & FZJ-JSC



JÜLICH SUPERCOMPUTING CENTRE

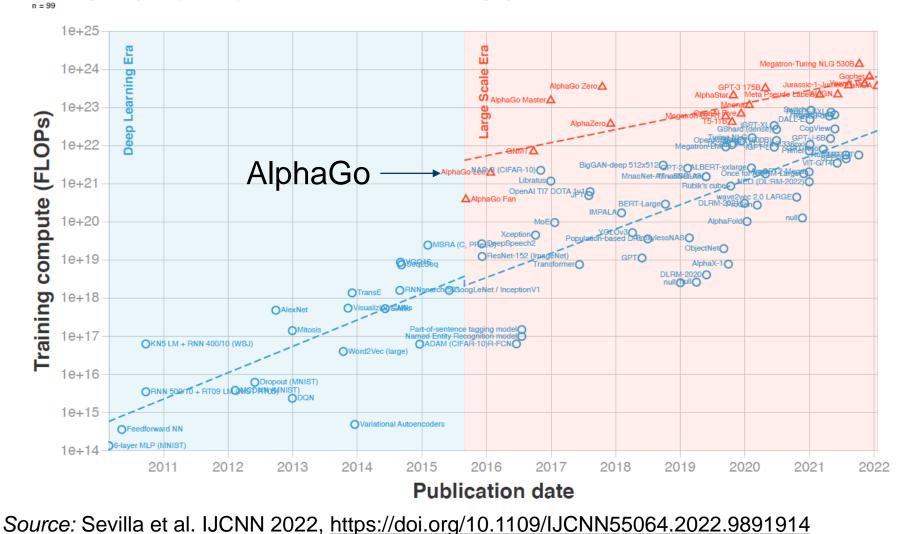
High Performance

Growth in Training Computation (1980-2023)



Adapted from: Charlie Giattino, Edouard Mathieu, Veronika Samborska and Max Roser (2023), ourworldindata.org

Growth in Training Computation (2010-2022)



Training compute (FLOPs) of milestone Machine Learning systems over time

- 2015: a new trend of large-scale models
- Computational
 capacity significantly
 higher (e.g., AlphaGo)
 than other models
 published in the same
 year
- Slower growth than the overall DL trend
 - doubling time
 ~8-17 months

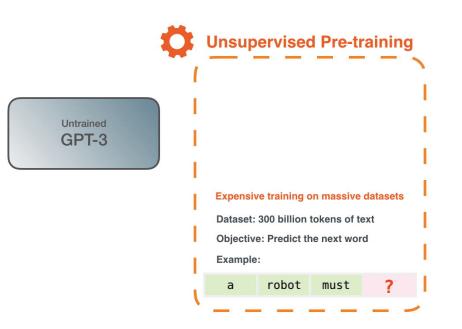
Mitglied der Helmholtz-Gemeinschaft

New Trends in Al-Foundation Models (FMs)

- Strong trend towards FMs trained on extensive domain-agnostic datasets, using:
 - unsupervised learning
 - self-supervised representation learning,
 - multimodal learning
- Deliver more robust insights and decision-making, and bring advances in:
 - Mainstream problems, e.g.: Natural Language Processing (NLP), Computer Vision
 - But also to many scientific fields, e.g. Earth observation [Jakubik et al, 2023].

Foundation Models

- Large deep learning models trained on a vast amount of data at scale
 - by self-supervised learning, or
 - semi-supervised learning
- They can be adapted to a wide range of downstream tasks
- Early examples of foundation models
 - pre-trained large language models,
 - e.g., GPT foundation models



Source: Jay Alammar, How GTP3 works

How to create a Foundation Model?

1) Gather data at scale

2) Train model once and evaluate

3) Fine-tune model for multiple downstream tasks

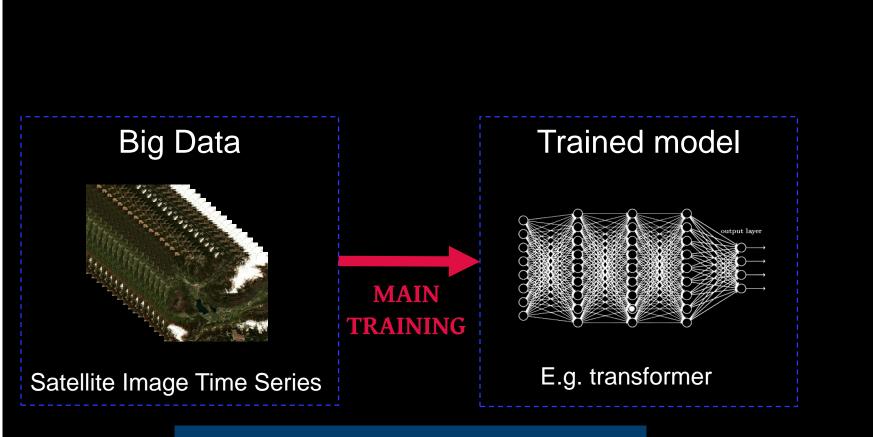
9

4) Inference (operational)

1). Gather Data at Scale

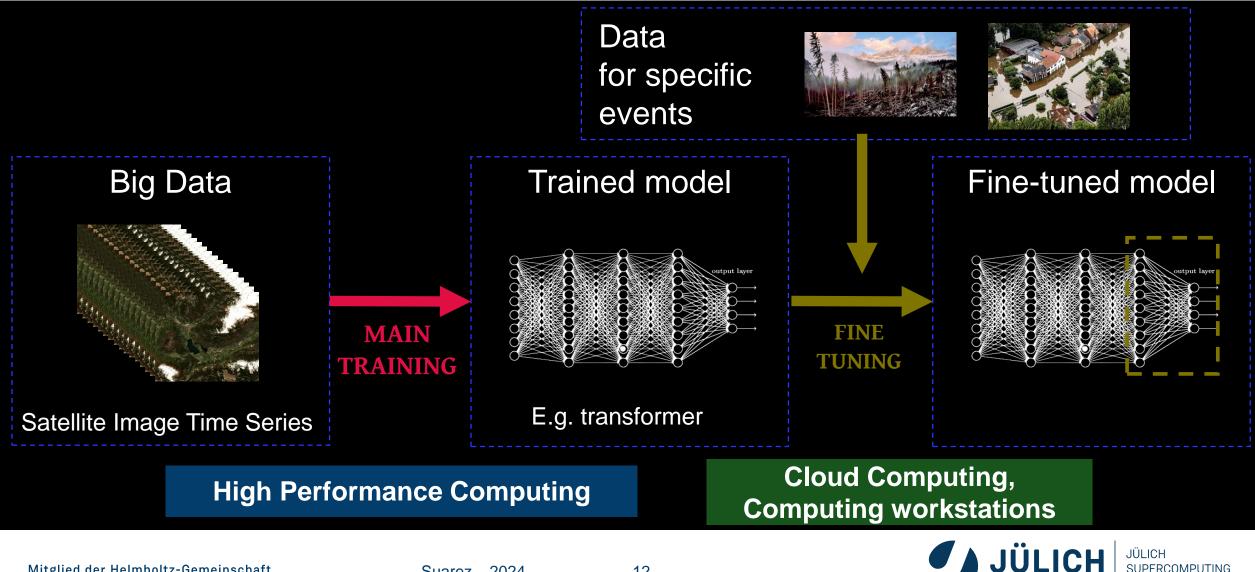
Source: Landsat with Sentinel - Global Coverage, NASA SVS, https://svs.gsfc.nasa.gov/4745

2). Train Foundation Model once and Evaluate



High Performance Computing

3). Fine-tune model for multiple Downstream Uses

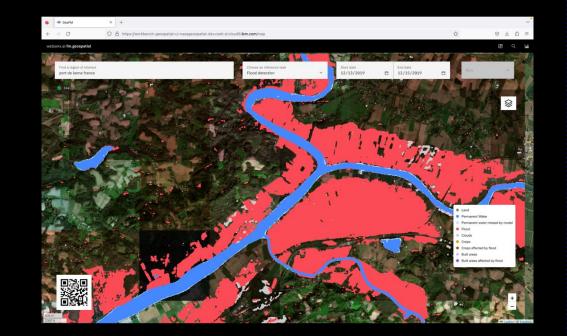


Mitglied der Helmholtz-Gemeinschaft

CENTRE

4). Inference Downstream Task: flood mapping

Flood detection



Flood impact

Maskey, et al., IEEE GRSM 2023, https://doi.org/10.1109/MGRS.2023.3302813

13

GPT-3: Time Required for Full Training

175 Billion weight parameters

JUWELS Booster @ Jülich

- 1× Nvidia Ampere100 ≈ 90 years
- 1× Nvidia Hopper100 \approx 15-30 years
- 2,000× Nvidia Ampere100 ≈ 16 days (if scaled well on JUWELS Booster)

GPT-4: Time Required for Full Training

1,8 Trillion weight parameters

JUWELS Booster @ Jülich

- 1× Nvidia Ampere100 ≈ 1,200 years
- 1× Nvidia Hopper100 ≈ 200-600 years
- 2,000× Nvidia Ampere100 ≈ 900 days

JUWELS BOOSTER

Benchmark Result

Example

- Task: Train ResNet50 on ImageNet
- GPUs: 1536 •
- Throughput: 1.7 Million images / sec
- Training complete after 43 seconds!
- Parallelization efficiency: 40% •

- Benchmark: NVIDIA's submission to MLPerf Training v0.7
- Metric: Throughput in Samples/sec
- 5 Benchmarks on up to 1536 GPUs
- Reference: NVIDIA's results on Selene

Source: Kesselheim et al. ISC 2021

CENTRE



Mitglied der Helmholtz-Gemeinschaft

16

OUTLINE

- Al in HPC
- Al computational requirements
- How to fit both AI and HPC users?
- HPC processing technology in the AI era

Deep Learning computational characteristics

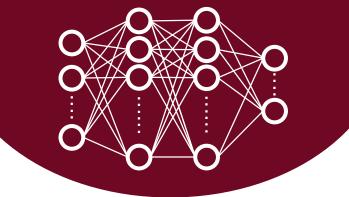
- Networks with 100s/1000s layers:
 - each having numerous parameters
 - adjusted during training

• Training models

- parallelisation via data parallelism
- Iarge-scale matrix and tensor operations
 → computationally intensive
- complexity increases exponentially with size of the model and the data
- preferred precision Bfloat16

Neural Networks

Layered arrangement of differentiable units (neurons) trained by backpropagation



Deep Learning

Artificial neural networks adapt and learn from vast amounts of data

Deep Learning computational characteristics

- Networks with 100s/1000s layers:
 - each having numerous parameters
 - adjusted during training

• Training models

- parallelisation via data parallelism
- large-scale matrix and tensor operations
 → computationally intensive
- complexity increases exponentially with size of the model and the data
- preferred precision Bfloat16

- Accelerators can do this very well
 - parallelism → distributed training, replicate model on several GPUs
 - high memory bandwidth → large data volumes
 - specialized hardware → cost effective
 - reduced precision → higher performance

Training Deep Learning Models Requires Accelerators

- **GPUs**: generic deep learning hardware (parallelizing matrix/tensor operations via vectorization)
- Specialized hardware, eg.
 - ASICs, e.g. TPUs (Google)
 - in-memory computing chips
 - Graphcore IPU: Colossus MK2,
 - Cerebras Wafer Scale Engine 2 (850k cores)

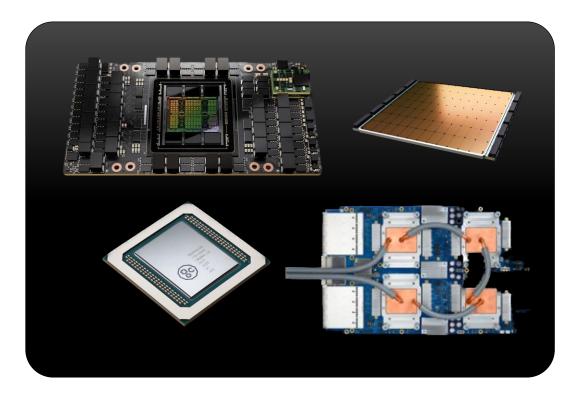


Image sources: <u>NVIDIA</u>, <u>Google</u>, <u>Graphcore</u>, <u>Cerebras</u>

Increasing Processor Diversity Accelerators Different trade-offs in the design → different processing units Đ ALU ALU ALU ALU ED) ALU ALU ALU ALU Control Unit ALU ALU $\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$ Cache Cache Cache Memory (DRAM) Memory (DRAM) Memory (DRAM) $\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$ ALU ALU ALU ALU ALU ALU ALU ALU Control Unit Control Unit $\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$ Cache Cache Memory (DRAM) $\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$ Memory (DRAM) Memory (DRAM) Many/Multi-AI core CPU VPU **FPGA** GPU accelerator 100's 10's 1.000.000's 1000's custom ASIC vector arithmetic functional programmable implementations strong cores (e.g. TPUs) units units gates

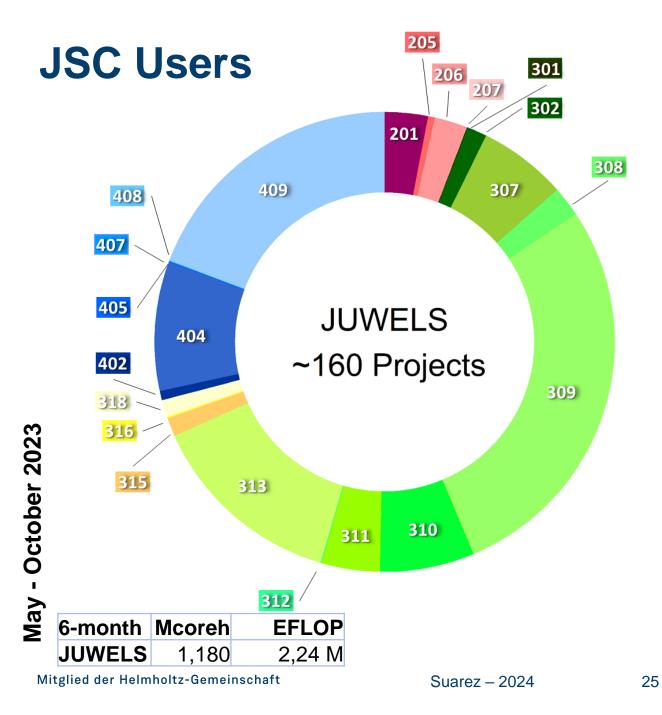
HPC SW Stack		Examples
Application Layer	Application	Climate & Meteorology, Drug design, QCD, Astrophysics, Protein Dynamics,
	Language	C/C++, Fortran, Python, CUDA
Programming Environment	Parallel programming	MPI, Open MP, Open ACC, CUDA, DSL
	Libraries	Math libraries, I/O libraries, checkpointing libraries,
	Compilers	icc, gcc, llvm
Tools	Debuggers	TotalView, Allinea DDT, PGI, GNU GDB,
	Performance analysis tools	Score-P, Scalasca, Vampir, V-Tunes, Extrae/Paraver,
Cluster SW	Resource Management/ Job Scheduling	SLURM, Torque/Maui, IBM LSF, PBS pro
	File system	Lustre, NFS, GPFS, BeeGFS
System SW	Cluster Management	ParaStation, Monitoring tools, SW installation tools, Containers
	Operating system	Linux OS (RedHat, CentOS,)
	Hardware	Server, Storage, Switch, Infrastructure

NG

AI SW Stack		Examples
Application Layer	Application	Climate & Meteorology, Drug design, QCD, Astrophysics, Protein Dynamics,
Programming	Language	Python
Environment Frameworks	AI Frameworks	PyTorch, TensorFlow, Horovod, Math libraries, I/O libraries, parallel libraries
Cluster SW	Resource Management/ Job Scheduling	SLURM, Torque/Maui, IBM LSF, PBS pro
	File system	Lustre, NFS, GPFS, BeeGFS
Outrous OW	Cluster Management	ParaStation, Monitoring tools, SW installation tools, Containers
System SW	Operating system	Linux OS (RedHat, CentOS,)
	Hardware	Server, Storage, Switch, Infrastructure

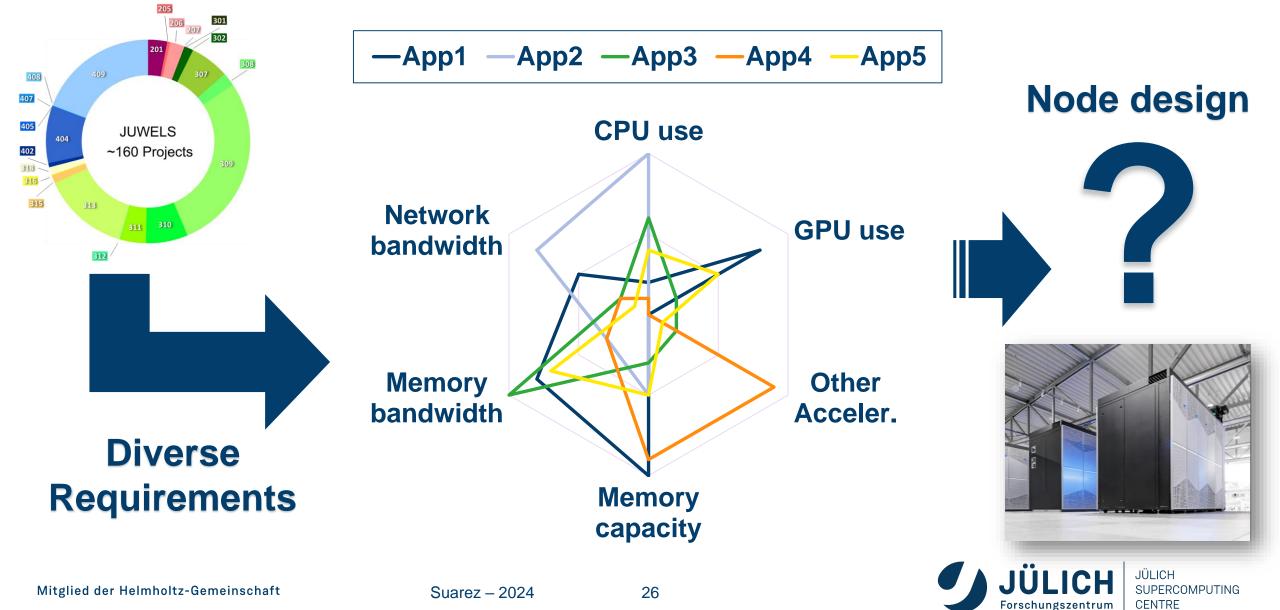
OUTLINE

- Al in HPC
- Al computational requirements
- How to fit both AI and HPC users?
- HPC processing technology in the AI era



201	Basic Biological and Medical Research				
204	Microbiology, Virology and Immunology				
205	Medicine				
206	Neurosciences				
207	Agriculture, Forestry and Veterinary Medicine				
301	Molecular Chemistry				
302	Chemical Solid State and Surface Research				
303	Physical and Theoretical Chemistry				
307	Condensed Matter Physics				
308	Optics, Quantum Optics and Physics of Atoms,				
	Molecules and Plasmas				
309	Particles, Nuclei and Fields				
310	Statistical Physics, Soft Matter, Biological Physics,				
	Nonlinear Dynamics				
311	Astrophysics and Astronomy				
312	Mathematics				
313	Atmospheric Science, Oceanography and Climate				
	Research				
315	Geophysics and Geodesy				
316	Geochemistry, Mineralogy and Crystallography				
318	Water Research				
402	Mechanics and Constructive Mechanical Engineering				
403	Process Engineering, Technical Chemistry				
404	Heat Energy Technology, Thermal Machines, Fluid				
	Mechanics				
405	Materials Engineering				
406	Materials Science				
407	Systems Engineering				
408	Electrical Engineering and Information Technology				
409	Computer Science				

How to serve diverse requirements with one single system?



BACKGROUND

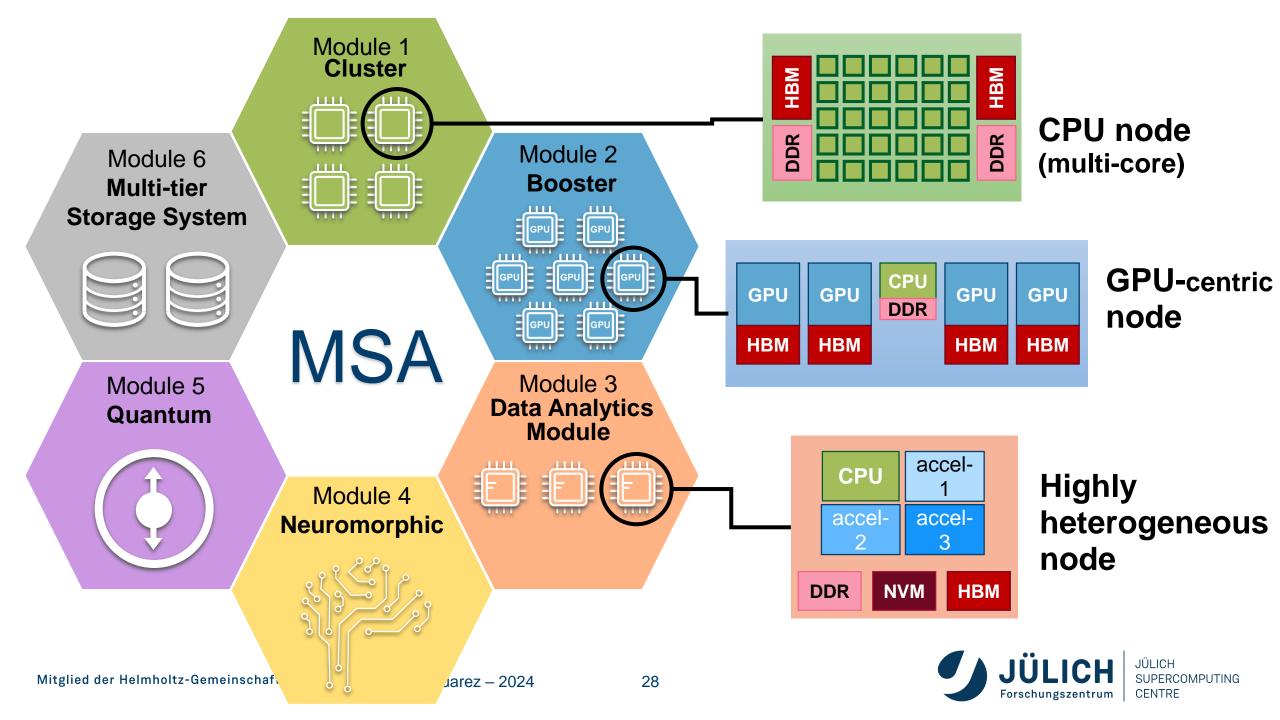
2011-2021: The DEEP projects

- **DEEP** (2011 2015)
 - Introduced Cluster-Booster architecture
- **DEEP-ER** (2013 2017)
 - Added I/O and resiliency functionalities
- **DEEP-EST** (2017 2021)
 - Modular Supercomputer Architecture

2021-2024: The SEA projects

- DEEP-SEA
 - Software for Exascale Architectures
- Also: IO-SEA, RED-SEA

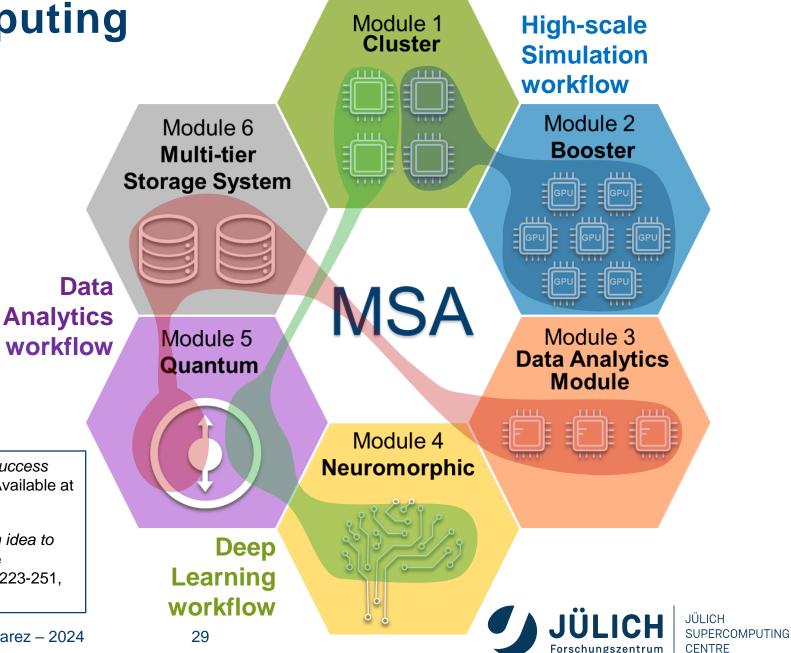
M DEEP-SEA



Modular Supercomputing Architecture

Serve HPC and AI applications with composable

heterogeneous resources



 Suarez et al. "Modular Supercomputing Architecture – A Success Story of European R&D", ETP4HPC White Paper. (2022) Available at https://www.etp4hpc.eu/white-papers.html#msa.

• Suarez et al., "Modular Supercomputing Architecture: from idea to production", Chapter 9 in Contemporary High Performance Computing: from Petascale toward Exascale, Volume 3, p 223-251, CRC Press. (2019)

Modular Supercomputer JUWELS

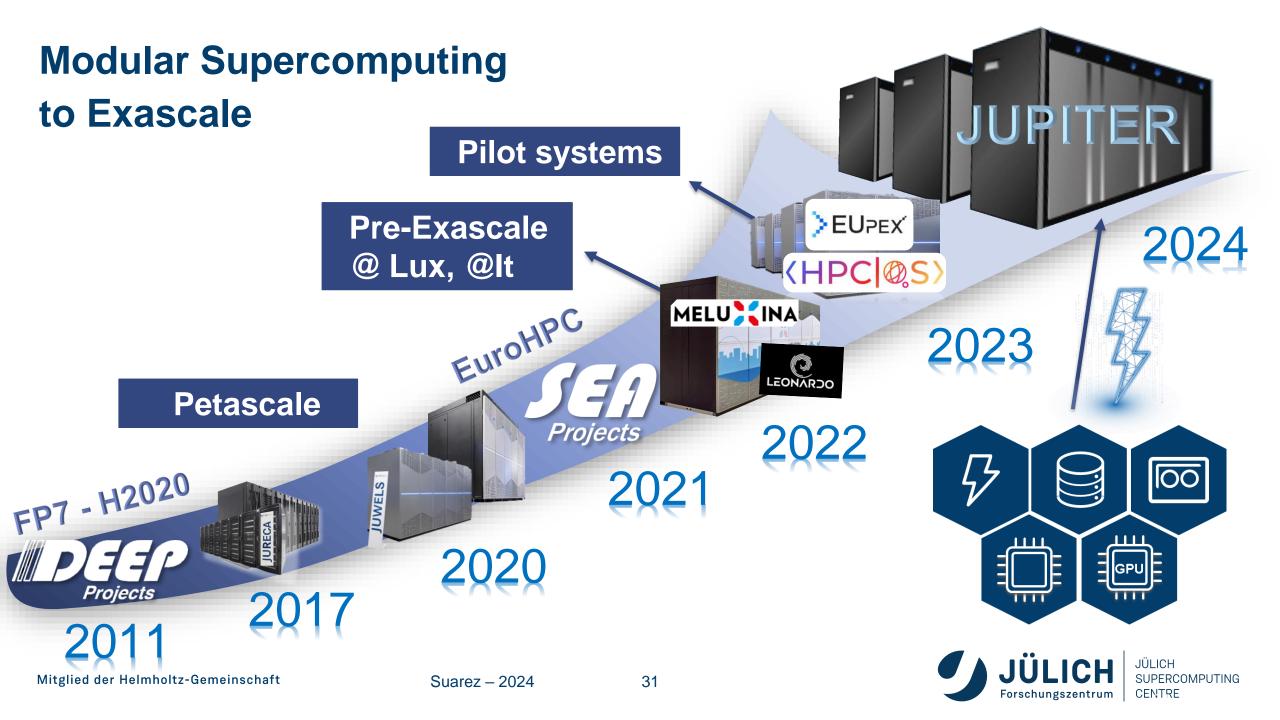
JUWELS Cluster #44

Intel Xeon (Skylake) processor InfiniBand EDR network 2,500 compute nodes **10 PFLOP/s peak** (CPU-based)

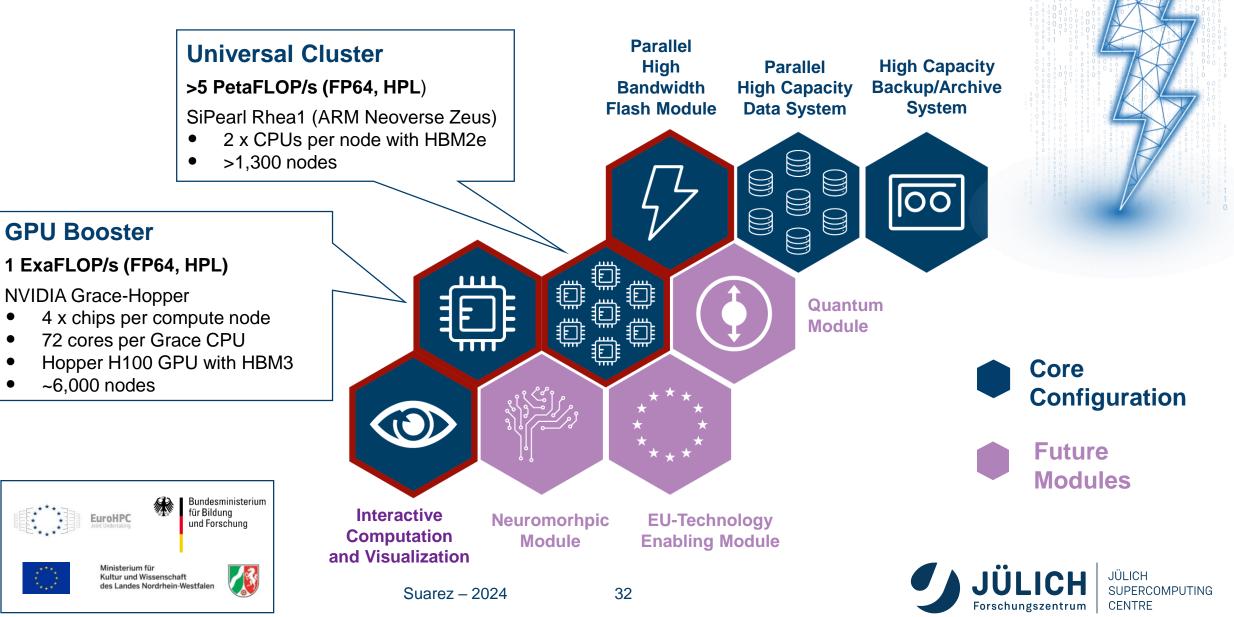
JUWELS Booster #7

AMD EPYC Rome 7402 processor 3,700 NVIDIA A100 GPUs InfiniBand HDR DragonFly+ **70 PFLOP/s peak** (GPU-based)

Funded through SiVeGCS (BMBF, MWK-NRW)



JUPITER Modular Heterogeneous Architecture



OUTLINE

- Al in HPC
- Al computational requirements
- How to fit both AI and HPC users?
- HPC processing technology in the AI era

Role of Supercomputers

- Big tech companies deploy their AI supercomputers
- Supercomputing now goes far beyond traditional scientific computing, which was driven by large governments
- Major industries building highly specialized supercomputers are taking the lead

TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings

Industrial Product*

Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cliff Young, Xiang Zhou, Zongwei Zhou, and David Patterson Google, Mountain View, CA

EORRES NUMOVATION N SUSTAINABILIT Tesla's Biggest News At AI Day Was The Dojo Supercomputer, Tech > Science BABY STEPS Google artificial intelligence Not The Optimus Robot supercomputer creates its own 'AI child' James Morris Contributor @ that can outperform its human-made rivals I write about the rapidly growing world of electric Follo vehicles The NASNet system was created by a neural network called AutoML earlier this year ■ 0 Oct 6, 2022, 07:23am Mark Hodge

Published: 15:22, 5 Dec 2017 | Updated: 11:27, 6 Dec 2017

RESEARCH

Introducing the AI Research SuperCluster — Meta's cutting-edge AI supercomputer for AI research

January 24, 2022

Sources: Jouppi et al. 2023, Forbes, Fabebook, TheSun, Hoefler@ETHZ

SUPERCOMPUTING EVOLUTION

Architecture paradigms

- 1940 1950: first computers are Supercomputers (specialized, expensive)
- 1960 1980: vector computers dominate HPC,

while general purpose computers come to market at much lower prices

- Focus: floating operations (linear Algebra)
- Special purpose technologies (fast vector processors, parallel architectures)
- Only few machines produced \rightarrow expensive!
- 1990 2000: cluster computers are born
 - Integrate general purpose CPUs in HPC \rightarrow more economic approach
 - Many "computers" connected through fast network
 - − Distributed memory → MPI
- 2010 2020: heterogeneous cluster systems
 - CPU + Accelerator technologies (mostly GPUs) → more FLOPS/Watt
 - Intel / AMD + NVIDIA / AMD / Intel
- 2020 today: very large GPU-based systems in HPC,

while hyperscalers dominate AI-market, drive GPU design (and price),

and build their own processors for their clouds

35

Which are the options for HPC?

A) Build own technology, e.g. Fugaku

- Challenges:
 - Multi-year, multi-million investment, not possible for every HPC site
 - Will chiplet designs help?
 - Will free-licence ISAs (RISC-V) help?

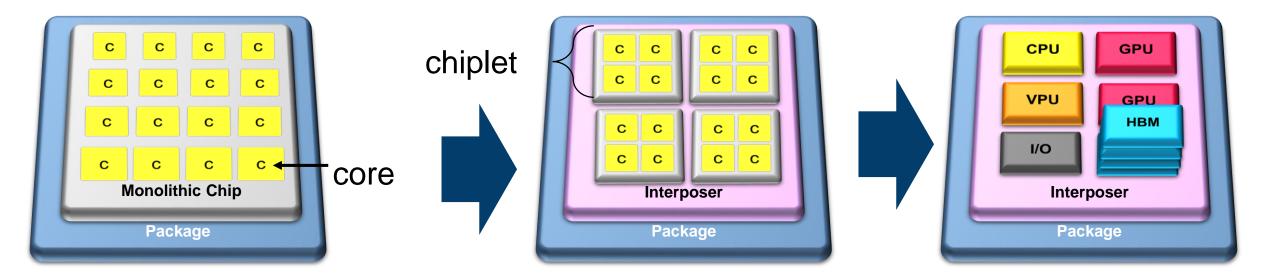
B) Adapt to AI market

- Use same hardware
- Ok for AI-training workloads
- HPC workloads must be ported
- Challenges:
 - Reduced precision
 - can legacy HPC codes adapt?
 - HPC is needed for training:
 - what when inference grows over training?
 - Hardware accessibility:
 - will hyperscalers sell their processors?

OI

A) Build Own Technology: using chiplets

Towards chiplet-based designs



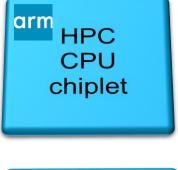
Monolithic Die

Multiple Dies – 2D/2.5D (homogeneous chip)

Multiple Dies – 3D (heterogeneous chip)

A) Build Own Technology: with licensable ISA

- Rely on well supported software environment
- Several companies with HPC products already
 - Fujitsu: A64Fx
 - NVIDIA: Grace
 - Amazon: Graviton
- +: Good software basis, low portability effort
- : High licence costs



Mitglied der Helmholtz-Gemeinschaft

024

A) Build Own Technology: with open ISA RISC-V

- Open Instruction Set Architecture (ISA) BSD licence
- Rich development community in industry and academia
 - Open standard enables new players bring new ideas
 - Used mainly in low-power embedded market
 - But also HPC designs are in development (e.g. supporting scalable vector formats (RVV; similar to Arm SVE)
- +: Lowers entry barrier (cost) for new developments
- : Lacks software support, danger of 'proliferation'



B) Adapt to the trends in AI market

• Computer Technology and Architecture perspective

- Integrate new developments into HPC environment (e.g. with MSA)
- Enter in co-design with new players in chip development
 - Both new start-ups and hyperscalers

• Application and Programming environment perspective

- Further develop and rely on portable programming models (e.g. Kokkos)
- Heavily invest on software engineering for applications
 - Maybe Foundation Models can help in code porting
- Develop/Adapt algorithms for mixed/lower precision

Which are the options for HPC?

A) Build own technology

and

B) Adapt to AI market

