
IF YOU COULD HAVE
ANY INSTRUCTION,
WHAT WOULD IT BE ?
JOHN LEIDEL

CHIEF SCIENTIST, TACTICAL COMPUTING LABS

SALISHAN 2024

STAGES OF ISA MODIFICATION
(THE KATHY YELICK PARADIGM)

Denial

Curiosity

Depression

Optimism

Confusion….

WHAT IS AN ISA?

An Instruction Set Architecture (ISA) is part of the abstract model of a computer
that defines how the CPU is controlled by the software. The ISA acts as an
interface between the hardware and the software, specifying both what the
processor is capable of doing as well as how it gets done.

https://www.arm.com/glossary/isa

WHAT IS AN ISA?

An Instruction Set Architecture (ISA) is part of the abstract model of a computer
that defines how the CPU is controlled by the software. The ISA acts as an
interface between the hardware and the software, specifying both what the
processor is capable of doing as well as how it gets done.

https://www.arm.com/glossary/isa

HOW DID I GET HERE?

A LITTLE ISA HISTORY…

HERE BE
DRAGONS

https://education.nationalgeographic.
org/resource/here-be-dragons/

HISTORY OF ISA’S
• Fred Brooks & the IBM System/360
• Backward compatibility of execution between

models

• “The SPREAD compatibility objective, in
contrast, postulated a single architecture for a
series of five processors spanning a wide
range of cost and performance.”

THINKING MACHINES
CM-5

• Arguably one of the first leadership
class systems to integrate a
commercial microprocessor and an
accelerator

• SPARC + DPEAC (MIMD w/
simulated SIMD)

• The DPEAC ISA supported parallel
communication operations in the form
of unidirectional sends

BATCHER CORNER
TURN
• Goodyear STARAN/Goodyear

MPP systems were 1-bit
processors configured in 2D
arrays (128x128)

• Memory could be accessed as
rows or columns with an internal
“corner turn” engine that could
transpose data in constant time

https://dl.acm.org/doi/pdf/10.1145/1500175.1500260

T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel and T. Manning, "In-Memory Intelligence," in IEEE Micro, vol. 37, no. 4, pp. 30-38,
2017, doi: 10.1109/MM.2017.3211117. keywords: {Random access memory;Computer architecture;VLIW;Vectors;Moore's
Law;Computational modeling;Process control;Microprocessors;Memory management;processor in memory;non-Von
Neumann;computer architecture;SIMD;vector processing},

CONVEY MX-100

• Convey developed hybrid FPGA+Intel
platforms

• FPGA’s were loaded with
“personalities” that encapsulated ISA’s

• Convey historically developed long
vector ISA’s with extremely good vector
ISA compiler support

• MX-100 platform was designed for
sparse workloads (graphs, SPMV, etc)

CHOMP ISA

Traditional x86 thread load
imbalance using work-stealing

MX-100 accelerated work-
stealing thread oversubscription
and balance

CHOMP ISA

• “Convey Hybrid OpenMP” utilized

OpenMP threading/tasking as the
primary driver for ISA development

• Where do we context switch!?

• Any single instruction could induce a

thread context switch (work sharing)
using a single bit in the instruction
payload

Convey Proprietary and Confidential 17 U//PROPIN

Convey CHOMP ISA 0.16

TC1 59 Thread Control Register: Signals Function Pipe
to Index Register Operand 1 contains an index
into the Thread Cache Control Register File.

TC2 60 Thread Control Register: Signals Function Pipe
to Index Register Operand 2 contains an index
into the Thread Cache Control Register File.

IMM 61 Indicates that the next 64-bit instruction payload
is a 64-bit immediate value that is required for

the current instruction.

BRK 62 Indicates that the current instruction should
force a breakpoint after the instruction is retired

from execution.

CTX 63 Indicates that the current instruction should
force a context switch operation after the

instruction is retired from execution.

Table N: CHOMP Control Field Description

The following figure represents the CHOMP Application Engine Function Pipe [AEFP]
format.

Figure N: CHOMP AEFP Instruction Format

CHOMP: A Framework and Instruction Set for Latency
Tolerant, Massively Multithreaded Processors

November 2012

A LITTLE EXPERIMENT…

BACKGROUND BEHIND XBGAS

• Traditional message passing paradigm
limitations
• User library overhead, driver overhead
• Optimized for large data transfers of

regular workloads
• Limited scalability for leadership-class

systems

• Little hardware/uArch support in existing
PGAS paradigms!

• TTU, TCL, ASU collaboration

Part 0 Part 1 Part 2 Part 3 Part 4

get

getget

put

put put

DATA MOVEMENT IS EXPENSIVE!

OpenSHMEM Get Profiling
(OSHMEM 3.0.4 + UCX

1.6.0)

XBGAS: A global address space extension on RISC-V for high
performance computing

XBGAS ARCHITECTURE

Extended xBGAS Registers e0 – e31

xBGAS Instructions are split into
• Ext. address management
• Base integer load/store
• Raw integer load/store
• Remote atomic instructions

RV64I ALU

x0
x1
x2
x3

.

.

.

.

.

.

x31

R
V6

4I
 R

eg
is

te
r F

ile

e0
e1
e2
e3

.

.

.

.

.

.

e31

xB
G

AS
 E

xt
en

de
d

R
eg

is
te

r F
ile

XBGAS PERFORMANCE

xBGAS significantly reduces the software cost of accessing a remote register-width data element to 9.7% of that
demonstrated by OpenSHMEM

Implies a software overhead reduction of 78.43%

A CHALLENGE FOR THE FUTURE

HPC IN THE FUTURE: “BUSINESS-
AS-USUAL WILL NOT BE
ADEQUATE”
• The entire system should be considered

• Hardware density is incredible, but the balance of efficiency is terribly
skewed!

• Optimizing single aspects of future architectures is intractable

• The contract between hardware and software needs to be revisited

• Explore the dark corners of applications, compilers and runtime
libraries!

• Challenge yourselves to understand the “where” and
”why” in the entire system as it reflects upon the
application and the user

ACKNOWLEDGEMENTS

• David Donofrio

• Steve Wallach, Tony Brewer, Bruce Toal

• Dr. Peter Kogge

• Martin Deneroff

