IF YOU COULD HAVE
ANY INSTRUCTION,
WHAT WOULD IT BE 2

STAGES OF ISA MODIFICATION
(THE KATHY YELICK PARADIGM)

WHAT IS AN ISA?

An Instruction Set Architecture (ISA) is part of the abstract model of a computer
that defines how the CPU is controlled by the software. The ISA acts as an
interface between the hardware and the software, specifying both what the

processor is capable of doing as well as how it gets done.

https:/ /www.arm.com /glossary /isa

WHAT IS AN ISA?

An Instruction Set Architecture (ISA) is part of the abstract model of a computer

that defines how the CPU is controlled by the software. The ISA acts as an
interface between the hardware and the software, specifyingbeth-whet-the

https:/ /www.arm.com /glossary /isa

HOW DID | GET HERE?

Kitgurr

STEVE
STRVE Nt

coO
MP
UuT
ERIM

A LITTLE ISA HISTORY...

HERE BE

DRAGONS

https: / /education.nationalgeographic.
org/resource /here-be-dragons/

ANNIVERSARY EDITION WITH FOUR NEW CHAPTERS

HISTORY OF ISA'S

* Fred Brooks & the IBM System /360

® Backward compatibility of execution between

models

* “The SPREAD compatibility objective, in

contrast, postulated a single architecture for a MYTHICAL

series of five processors spanning a wide MAN-MONTH

range of cost and performance.” FREDERIGK P. BROOKS, JR.

1.4 A Simple C* Routine

The C* routine below performs both ordinary scalar C operations and parallel

THINKING MACHINES [ESES

#include <stdio.h>
CM-5 void fishcake(int x, int:current a, float:current b)

{
float sum;
X =X + 2;
* Arguably one of the first leadership printf (“The value of x is: %d\n”, x);
b=Db* 17.2f + a * x;
sum = += Db;
commercial microprocessor and an printf (“The sum of b is: %f\n”, sum);

class systems to integrate a

accelerator

SPARC + DPEAC (MIMD w / 5.1 Tips for Increasing General Communication

Performance :

simulated SIMD)

The DPEAC ISA supported parallel If possible, write your program o use a send operation — for example:
communication operations in the form int:current index, dest, source;

5.1.1 Use Send Operations instead of Gets

[index]dest = source;

of unidirectional sends
instead of a get operation — for example:

dest = [index]source;

The CM-5 hardware does not directly implement get operations; instead, the run-
time system performs a send for the request and a send for the reply. Therefore,
a get operation is roughly twice as expensive as a send.

https://dl.acm.org/doi/pdf/10.1145/1500175.1500260

| BATCHER CORNER

——d

e TURN

SIGNAL CONTROL
UNIT PATHS
ARRAY U oNIT

Goodyear STARAN/Goodyear

MPP systems were 1-bit
processors configured in 2D

arrays (128x128)

128 WIRES

STAGING MEMORY

DATA PATHS

\ Memory could be accessed as

rows or columns with an internal

HOST PROCESSOR “
VAX 117780 corner turn” engine that could

transpose data in constant time
DISKS
A — BIT-SLICE ACCESS MODE B — WORD ACCESS MODE
TERMINALS @
@ DISPLAYS 256

HARTRRraw

Mg

T/Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel and T. Manning, "In-Memory Intelligence," in /EEE Micro, vol. 37, no. 4, pp. 30-38,
2017, doi: 10.1109/MM.2017.3211117. keywords: {Random access memory;Computer architecture;VLIW;Vectors;Moore's
Law;Computational modeling;Process control;Microprocessors;Memory management;processor in memory;non-Von Figure 2—Bit-slice and word access modes
Neumanpfcomputer architecture;SIMD;vector processing},

CONVEY MX-100

® Convey developed hybrid FPGA+Intel
platforms

®* FPGA’s were loaded with
“personalities” that encapsulated ISA’s

® Convey historically developed long
vector ISA’s with extremely good vector

ISA compiler support

* MX-100 platform was designed for
sparse workloads (graphs, SPMYV, etc)

CHOMP [SA

0. using 1:2 mm—

Traditional x86 thread load
imbalance using work-stealing

"Dte b using 1:2 mm—.

MX-100 accelerated work-
stealing thread oversubscription
and balance

CHOMP [SA

40 39 32 31

24 23

16 15

87

* “Convey Hybrid OpenMP” utilized

func

opc

Rt2

Rt1

OpenMP threading /tasking as the

primary driver for ISA development

®* Where do we context switchle

® Any single instruction could induce a

thread context switch (work sharing)

using a single bit in the instruction

payload

CHOMP: A Framework and Instruction Set for Latency
Tolerant, Massively Multithreaded Processors

HOME COMPLETE RESULTS GREEN GRAPH500 SUBMISSIONS BENCHMARK SPECIFICATION CONTACT US

‘GR

£oUnzoND-Cr AU LOIIPUUNE Law, 1TILET yasiingon auwImouve, anu - unversity, Bigavyles
Febric Labs commercial industry, and
benchmarking commercial
for all fields benchmarking

Lomonosov T-Platforms Moscow State Russia 0 gigabytes Custom
University

Jugene BlueGene/P Forschungszentrum Germany 0 gigabytes Custom
Juelich

Intrepid BlueGene/P DOE/SC/Argonne Argonne USA Science Government 131071 65536 Custom
National Laboratory National gigabytes
Laboratory

T-Platforms Moscow State Russia 0 gigabytes
University

Sugon Institute of Computing Beijing Research University 4096 Optimized
Technology, Chinese gigabytes
Academy of Sciences

Franklin Cray Lawrence Berkeley 0 gigabytes
National Laboratory

Convey MX-100, Convey Computer Richardson, big data vendor 384 custom
host-210 Corporation X gigabytes

Altix ICE 8400EX SGI Altix ICE SGI 0 gigabytes Reference
8400EX

Nebulae TC3600 Blade InfiniBand National Shenzhen Multiphysics, Industry 12288 Custom
System, Xeon QDR Supercomputing Fluid mechanics gigabytes
X5650 6C Centre in Shenzhen
2.66GHz

November 2012

A LITTLE EXPERIMENT...

BACKGROUND BEHIND XBGAS

® Traditional message passing paradigm get
limitations
® User library overhead, driver overhead Part O Part 1

* Optimized for large data transfers of
regular workloads

Limited scalability for leadership-class
systems

* Little hardware /uArch support in existing
PGAS paradigms!

®* TTU, TCL, ASU collaboration

put
put

Part 2

get

put

Part 3

Part 4

DATA MOVEMENT IS EXPENSIVE!

Software W Network 1/O

OpenSHMEM Get Profiling
(OSHMEM 3.0.4 + UCX
1.6.0)

9
~
=
-
O 40
Q.
(o]
S
o

N
o

o

XBGAS: A global address space extension on RISC-V for high
performance computing

I-Type
Mnemonic Base Funct3 Opcode
111 1111011

X BGAS ARCH ITECTU R E S rs1'::xt1 011 1111011

eld rd, imm(rs1)

R-Type
RV641 ALU Mnemonic Funct7 RS2 RS1 Funct3, RD Opcode

erld rd, rs1, ext2 1010101 ext2 rsi 011 rd 0110011

ersd rs1, rs2, ext3 0100010 rs2 rsi 011 ext3 0110011

S-Type
Mnemonic Base Funct3 Opcode
esd rs2, imm(rs1) rs1+exti 011 1111011

esw rs2, imm(rs1) rsi+extt 010 1111011

xBGAS Instructions are split into
Ext. address management

RV64l Register File

* Base integer load/store
* Raw integer load/store

xBGAS Extended Register File

* Remote atomic instructions
Extended xBGAS Registers e0 — e31

XBGAS PERFORMANCE

o o (=) (=] o
[=2] (o] < o

(%) uonodoud

Put Payload

Network /0 &Y

Software ==

o o o o o
[<o] [{e] < o~

(%) uonodold

Get Payload

xBGAS significantly reduces the software cost of accessing a remote register-width data element to 9.7% of that

demonstrated by OpenSHMEM

Implies a software overhead reduction of 78.43%

A CHALLENGE FOR THE FUTURE

HPC IN THE FUTURE: “BUSINESS-
AS-USUAL WILL NOT BE
ADEQUATE”

® The entire system should be considered

®* Hardware density is incredible, but the balance of efficiency is terribly

skewed!

® Optimizing single aspects of future architectures is intractable

® The contract between hardware and software needs to be revisited

Explore the dark corners of applications, compilers and runtime
librariesl!

Challenge yourselves to understand the “where’” and
“why”’ in the entire system as it reflects upon the

application and the user

ACKNOWLEDGEMENTS

® David Donofrio
* Steve Wallach, Tony Brewer, Bruce Toal
® Dr. Peter Kogge

®* Martin Deneroff

