

Optical I/O Technology to Meet Future Demands of HPC and AI

Mark Wade, PhD | President, CTO, Co-Founder | April 25, 2023

Problem Statement for the Session

...However, disaggregation requires high levels of intra-resourcecommunication, including stringent requirements for ultra-low latency and ultra-high transmission bandwidth.

This state of the technology session poses and will explore thefollowing questions. When, where, and to what extent does disaggregation make sense for HPC systems? Will CXL, a cache-coherent interconnect for data centers, be deployed widely in HPC? Will large-scale supercomputers be disaggregated beyond rack-scale? Should we disaggregate main memory? What are the implications?

What is the state of optical I/O?

I've Heard This Story Before – What's Different?

- High value, paradigm shifting commercial application
 - Transformer based Large Language Models (GPT3, GPT4, LaMDA, LLaMA)
 - Arms race to build systems that can train larger (parameters, sequence length) models economically
- Chiplet based System-in-Package designs and advanced packaging
- New optical devices and architectures supporting multi-Tbps chips
- 300mm CMOS foundries scaling HVM (GlobalFoundries, TSMC, Intel Foundry)
- Thousands of units are already being shipped to development partners

Ayar Labs at a Glance

The Beginning

- Founded in 2015
- MIT & Berkeley research on electronics/photonics from 2010
- Built the first ever microprocessor chip with optical I/O
- Early DARPA bootstrapping

Massachusetts Institute of Technology

Today

- Locations: Santa Clara and Emeryville CA, Boston MA
- Approximately 100 employees (85% Masters & PhD)
- **126+** patent applications filed and in process. 26 granted
- **\$35M+** in aggregate (DOD/DARPA, DOE, NSF) funds
- \$195M of Venture Capital raised (\$130M Series C Q1'22)

Challenges to Scaling AI & HPC

Large language models (e.g. ChatGPT, Bard) are reshaping internet search - \$160B/yr revenue (Google)

Strawman estimates ~\$100B CapEx required to support full Google capacity¹

Training and inference of large models are becoming increasingly bandwidth bound (40-75% run time spent in comms)²

Similar distributed computing system challenges between AI & HPC – Exascale efficiencies result in 500MW projected for Zettascale³

Advanced packaging and heterogeneous integration enables optical I/O chiplets – significantly changing the traditional bandwidth-distance constraints

[1] https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

[2] Pati, et al, Computation vs. Communication Scaling for Future Transformers on Future Hardware, https://arxiv.org/ftp/arxiv/papers/2302/2302.02825.pdf
[3] Lisa Su, ISSCC Plenary, 2023

Machine Learning Trends

COMPUTE

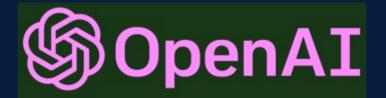
- 10,000x growth in model size and compute requirements in ~5 years
- ~\$10M energy bill to train one model
- Insatiable model growth (parameter size, sequence lengths) create tremendous hardware strain

Model Growth Outpacing Hardware

Growing gap between memory demand and supply

- Largest model that can fit on one GPU is ~1-10B parameters
- Getting to >>10B parameter size models requires parallelizing the models across many sockets (i.e. scale-out)
- Scale-out architectures create tremendous pressure on the communications fabric

[Source: NVIDIA COBO Workshop Nov 2022]


ChatGPT: Optimizing Language Models for Dialogue

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response.

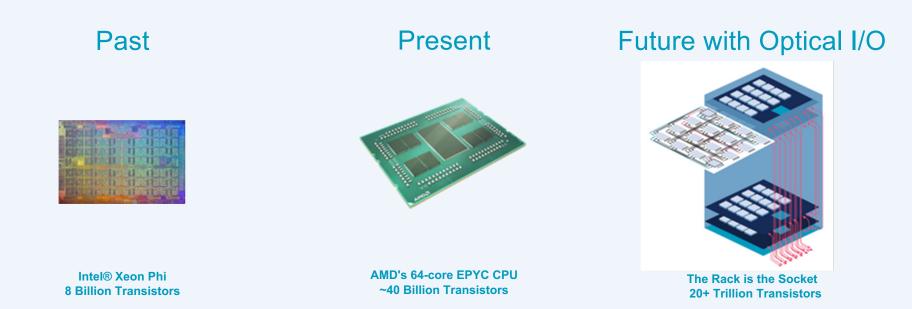
(Released in December 2022)

"OpenAI must be on the cutting edge of AI capabilities and low latency, high bandwidth optical interconnect is a central piece of our compute strategy to achieve our mission of delivering artificial intelligence technology that benefits all of humanity." - Chris Berner Head of Compute

OpenAl

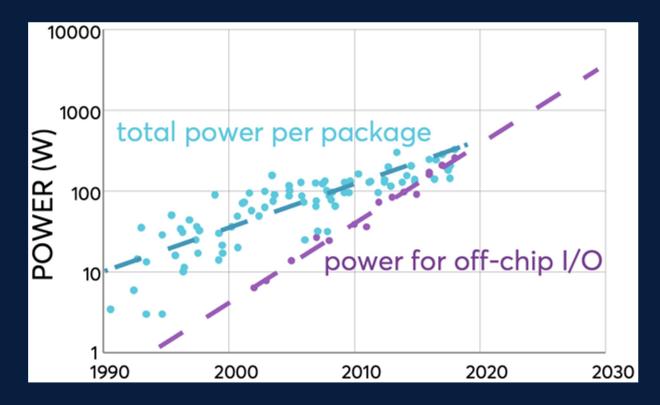
Forbes

FORBES > MONEY

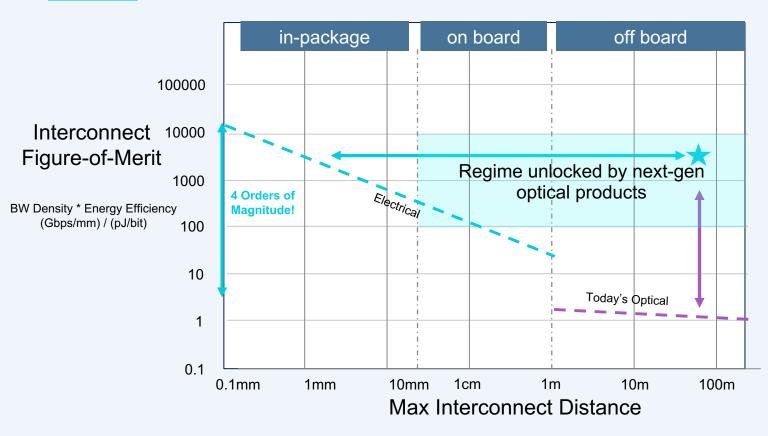

Microsoft Confirms Its \$10 Billion Investment Into ChatGPT, Changing How Microsoft Competes With Google, Apple And Other Tech Giants

Q.ai - Powering a Personal Wealth Movement

"OpenAI must be on the cutting edge of AI capabilities and low latency, high bandwidth optical interconnect is a central piece of our compute strategy to achieve our mission of delivering artificial intelligence technology that benefits all of humanity." - Chris Berner Head of Compute

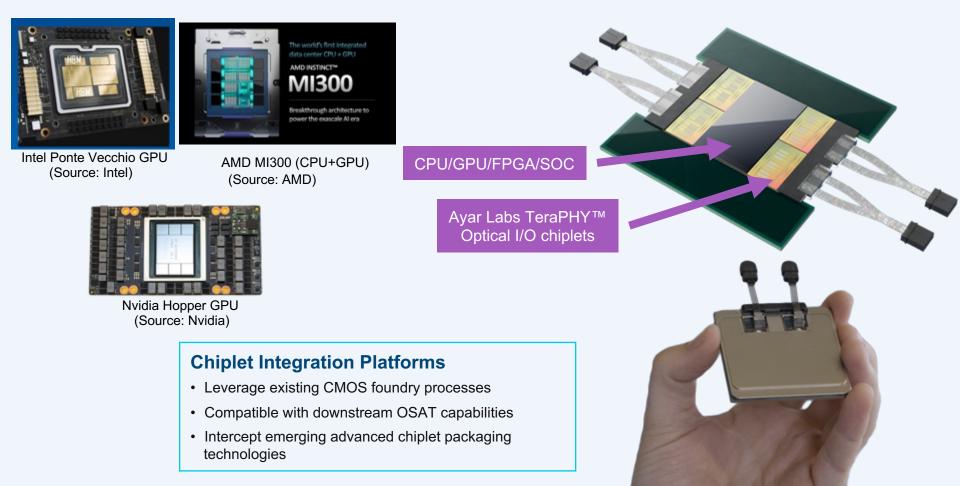

OpenAl

Optical I/O can Redefine the compute "Socket"



CPU's are many compute cores and functions wrapped in a power efficient, low latency, high bandwidth interconnect. Optical I/O has these characteristics but with extended reach

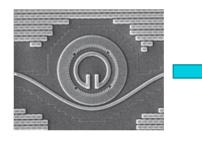
The Challenge: The Bandwidth Bottleneck Power Wall



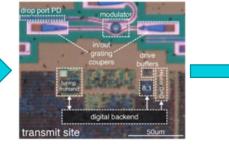
The Challenge: Electrical Signaling is Not Scaling

[G. Keeler, DARPA ERI Summit 2019]

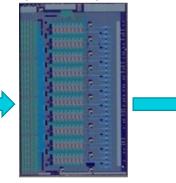
Advanced Chiplet Packaging Enables Optical I/O

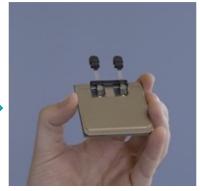


Ayar Labs Optical I/O Solution *TeraPHY™* CMOS Optical I/O Chiplet Socket – Socket Board – Board Rack - Rack data Typical in-package SoC temperature 80-110°C 2.5D or 2D package Electrical I/O (Parallel or Serial) laser SuperNova[™] multi-port, External laser module multi-wavelength laser source temperature <55°C


The Ayar Labs Optical I/O solution breaks the bandwidth-distance bottleneck

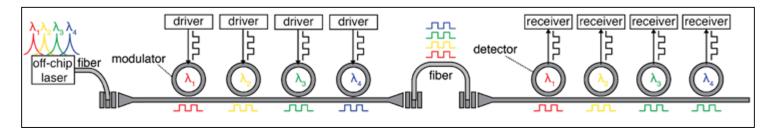
Technology Basics


Microring Resonators


Electronic/Photonic Integration

Optical chiplets

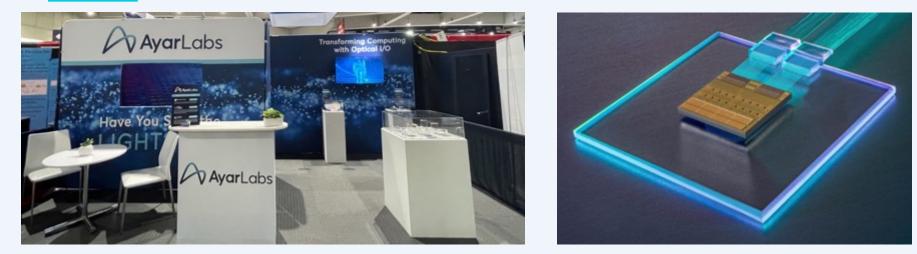
SoC In-Package Integration



- 1,000x smaller than optical devices
- High-speed capability
- Compatible with 300mm CMOS

• Dense CMOS integration

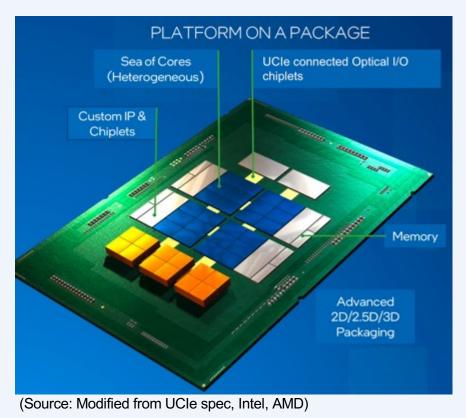
- TeraPHY[™] chiplet for in-package optical I/O
- Integration with state-of-the-art SoCs
- Direct from the package optical I/O


Microring WDM Bandwidth Scaling (Tx+Rx)

Chiplet bandwidth = 2 * (# of ports/chiplet) x (# of wavelengths/port) x (data rate/wavelength)

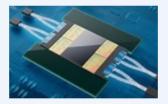
Chiplet Bandwidth	# of ports / chiplet	# of wavelengths/port	Data rate/wavelength	
4.096 Tbps	8	8	32 Gbps	
8.192 Tbps	16 (8)	8	32 Gbps (64 Gbps)	
16.384 Tbps	16	8	64 Gbps	
32.768 Tbps	16	16	64 Gbps	

Publicly Demonstrating Products

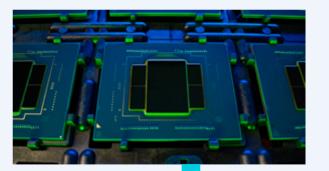

Presented at Optical Fiber Conference (OFC) 2023

Live Demonstration of Industry's first 4-Tbps Optical Solution

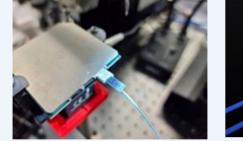
Industry First 4 Tbps Optical I/O Demonstrations

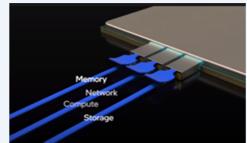


Future Systems In Package with Optical I/O



Ge	en	Electrical I/F (Advanced Package)				Optical I/F (CW-WDM)			Optical Chiplet BW	Off-package IO BW (4-8 chiplets per
	I/I	[Ŧ.	Modules	Tx / Rx IOs	Data Rate [Gbps/IO]	Ports	λs / Port	Data Rate [Gbps/λ]	(Tx+Rx)	package)
1	AI	В	24	20 / 20	2	8	8	16	2 Tbps	8-16 Tbps
2	AI	В	16	80 / 80	2	8	8	32	4 Tbps	16-32 Tbps
3	UC	Ie	16	32 / 32	8	8	16	32	8 Tbps	32-65 Tbps
4	UC	Ie	16	64 / 64	8	16	16	32	16 Tbps	65-131 Tbps
5	UC	Ie	16	64 / 64	16	16	16	64	32 Tbps	131-262 Tbps

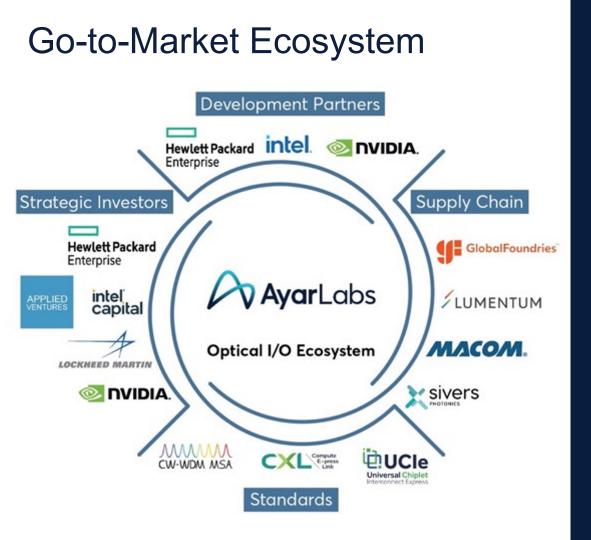

- Gen 1 and Gen 2 already built and hardware validated
- 16-32 Tbps off-socket optical I/O bandwidth possible today
- Clear multi-generation roadmap leveraging advanced packaging and industry standards
- >250 Tbps off-socket optical I/O bandwidth possible in 10-15 year time frame



Packaging, Fiber Attach and System Integration

Package Level Pluggable Optical Connectors

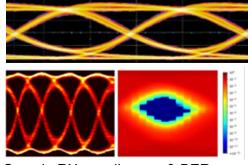
(Intel Innovation Day 2022)


Multi-chip packages with optical chiplets assembled into standard form factors

(Intel + Ayar OFC 2021)

(Intel + Ayar OFC 2023)

Partnering across the HVM ecosystem


Path to Production: Recent Progress

Completed Product Validation

4 Tbps (Tx+Rx)

Link Name	TX Macro	TX Lock	RX Macro	RELock		
olex,02520,0,0					1.1377e+16	2.0217e-15
oleik_02420_b_1					1.1332e+16	6.1773e-15
olex,02520,0,2					1.1301e+16	8.84020-15
44,0250,0,3					1.1277e+16	3.8125e-15
olex,02520,0,4					1.1230e+16	2.6714e-16
olex,02520,0,5					1.1175e+16	6.2540+15
olex,02430,0,5					1.1129e+16	1,7965e-16
olex,02420,0,7					1.1052e+16	6.3336e-16

Sample TX eye diagram @ 32Gbps

Sample RX eye diagram & BER sweep

Established Manufacturing Line and Currently Shipping

Customer Platform Integration

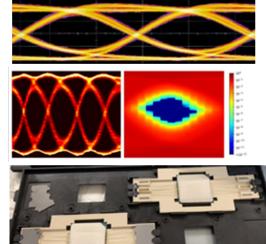
2022 fullyassembled hardware, performance validated

Platform bring-up happening now

Status Check of Optical I/O – is it ready?

Does it work?

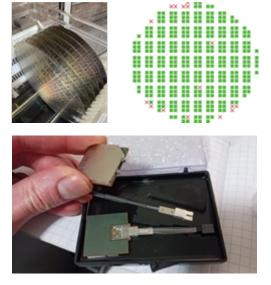
Is it manufacturable?


Does the cost structure scale?

Status Check of Optical I/O – is it ready?

Does it work?

Sample 32 Gbps eye diagrams



Integration into early customer adoption 16 Tbps off-socket BW

- 2.2x higher than Nvidia H100
- Equivalent to 256 lanes of PCIe Gen5
- <1e-12 native BER (no heavy FEC needed)</p>

Is it manufacturable?

Does the cost structure scale?

Already shipping thousands of engineering sample units

Cost structure drivers:

- 1) 300mm HVM CMOS economies of scale
- 2) Laser die and modules designed and assembled with HVM partners
- 3) Increased integration of optical functionality
- A single laser is shared across many optical channels

AyarLabs Thank You!