
Provides memory safety using a mix of compiler and runtime checks.

Code is divided into safe and unsafe blocks.

Rust also has a number of special rules and properties that are checked
by the compiler:

ownership - all variables are owned by one and only one function

exclusion rule - code can have multiple immutable references to a
variable or one mutable reference, but never both at the same time

lifetime analysis - all references have a lifetime in which they can be
used.

Below is the message rate profile from osu_mbw_mr [5] written in C
compared with a version implemented in Rust with RSMPI [7].

Despite being memory safe, Rust has comparable performance to C [8].

Improving MPI Memory Safety for Modern Languages
Jake Tronge, Howard Pritchard

What
is
memory
safety?

Rust

[1] Message Passing Interface Forum. 2021. MPI: A Message-Passing Interface
Standard Version 4.0. Retrieved from https://www.mpi-forum.org/docs/mpi-4.0/
mpi40-report.pdf.
[2] Tim Jammer, Alexander Hück, Jan-Patrick Lehr, Joachim Protze, Simon
Schwitanski, and Christian Bischof. 2022. Towards a Hybrid MPI Correctness
Benchmark Suite. In Proceedings of the 29th European MPI Users' Group Meeting
(EuroMPI/USA'22). Association for Computing Machinery, New York, NY, USA, 46–
56. https://doi.org/10.1145/3555819.3555853
[3] William Gropp. 2000. Runtime Checking of Datatype Signatures in MPI. In
Proceedings of the 7th European PVM/MPI Users' Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface. Springer-Verlag,
Berlin, Heidelberg, 160–167.
[4] Rust Community. 2023. The Rust Reference. Retrieved from https://doc.rust-
lang.org/reference/index.html.
[5] Dhabaleswar K. Panda. 2023. OSU Micro-Benchmarks 7.1. Retrieved from https://
mvapich.cse.ohio-state.edu/benchmarks/.
[6] Bincode. 2023. Bincode. Retrieved from https://github.com/bincode-org/bincode.
[7] RSMPI. 2023. MPI bindings for Rust. Retrieved from https://github.com/rsmpi/
rsmpi.
[8] Manuel Costanzo, Enzo Rucci, Marcelo R. Naiouf, and Armando De Giusti. 2021.
Performance vs Programming Effort between Rust and C on Multicore Architectures:
Case Study in N-Body. Retrieved from https://arxiv.org/abs/2107.11912.
[9] NSA. 2022. Software Memory Safety. Retrieved from https://media.defense.gov/
2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF.
[10] Unified Communication X. 2023. Unified Communication X. Retrieved from
https://openucx.org/.

Memory safety protects a program from errors that could
lead to memory corruption and undefined behavior (UB) [9].

Contributions

Implementations of memory safe point-to-point (P2P)
messaging in Rust.

Analysis of performance and overhead of the different
solutions.

Methods for doing efficient and memory safe messaging with
multiple languages

Results

Safe P2P communication
Possible methods: serialization or type IDs (internal type ID or
hash of type signature [3])

We implemented three different designs, all of which are based on

UCX [10]:
bincode [6] - a serialization method
flat - uses type IDs with no data preprocessing or packing
iovec - variation of flat allowing for more complicated types

FlatBuffer trait/interface used for messages:

We wrote latency and bandwidth benchmarks based on the OSU
Micro-Benchmarks [5].

RSMPI [7], the existing MPI binding, is used as a baseline.

Different datatypes were used to best show performance of the
different methods:

simple:

complex-compound:

complex-noncompound:

Conclusion
Improving memory safety can increase usability and decrease
development errors in MPI applications.

P2P messaging can be made safe without prohibitive performance
loss.

Methods such as serialization work better for more complicated
types, but are not as performant.

Type IDs are best used for validating messages with simpler
types.

Further research is needed for other areas, such as with collective
argument mismatches.

For MPI programs to be valid and well-defined, there are many
requirements that need to be checked: collective call arguments must
match between processes; datatypes must also match with point-to-
point messages [1, 2].

Programs that do not follow these rules are considered invalid and
memory unsafe. MPI profiling and debugging tools can find a lot of
these errors, but not all, especially memory safety errors that only
occur under certain conditions.

More recent languages, such as Rust [4], are designed to be memory
safe and this makes using MPI as a safe parallel library challenging.

MPI and memory safety

References

Acknowledgements

{jtronge,howardp}@lanl.gov

Jake Tronge and Howard Pritchard acknowledge support by the
National Nuclear Security Administration. Los Alamos National
Laboratory is operated by Triad National Security, LLC for the
U.S. Department of Energy under contract 89233218CNA000001.
LA-UR-23-23979.

Testing

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
size (bytes)

0

10

20

30

40

50

la
te

nc
y

(
s)

latency: simple

flat

bincode

iovec

rsmpi

2048 4096 8192 16384 32768 65536
size (bytes)

0

20

40

60

80

100

la
te

nc
y

(
s)

latency: complex-noncompound

flat

bincode

iovec

rsmpi

128 256 512 1024 2048 4096 8192 16384 32768 65536131072
size (bytes)

0

50

100

150

200

250

300

la
te

nc
y

(
s)

latency: complex-compound

bincode

iovec

2048 4096 8192 16384 32768 65536 131072 262144 5242881048576
size (bytes)

1000

2000

3000

4000

5000

6000

ba
nd

w
id

th
 (

M
B

/s
)

bandwidth: complex-noncompound-2k-1024k

iovec

bincode

flat

rsmpi

8 16 32 64 128 256 512 1024 2048 4096 8192 163843276865536
Message size (bytes)

1

2

3

4

5

M
es

sa
ge

 r
at

e
(M

es
sa

ge
s/

s)

1e6 Message Rate Profile

C

Rust

