
Vivek Sarkar
Professor & Chair, School of Computer Science
Stephen Fleming Chair
College of Computing
Georgia Institute of Technology

Random Access talk, Salishan 2023

The 
future is

asynchronous …



• The Bulk Synchronous Parallelism 
model has served us well for 
decades, but the fraction of idle 
time is increasing due to an 
increase in waiting time related to 
synchronous operations …
• Waiting for memory operations
• Waiting for communications
• Waiting at a barrier
• Waiting for accelerator kernels
• Waiting for I/O

•… and the impact of waiting time is 
increasing rapidly with
• increasing degree of parallelism
• increasing variability and load 
imbalance due to heterogeneity, 
sparsity, virtualization, …

BSP Model and Increasing Impact of Idle Time

Processing Elements

Local
Computation

Global
Communication

Barrier 
Synchronization

Figure acknowledgment: “An Overview of the BSP Model of 
Parallel Computation”, Michael C. Scherger, Kent State University 

I
D
L
E

PE0 PE1 PE2 …

Ti
m

e



Using HPMs to measure idle cycles …

3

BALE KERNEL CYCLES PAPI_RES_STL % IDLE CYCLES

histo_agp (synchronous) 2.74E+10 1.25E+10 45.6%

histo_selector (asynchronous) 2.16E+09 1.48E+08 6.9%

ig_agp (synchronous) 2.30E+11 4.24E+10 18.4%

ig_selector (asynchronous) 3.52E+10 4.22E+08 1.2%



• Ideas from X10 project in HPCS program and 
follow-on Habanero project at Rice and Georgia 
Tech
• async <stmt> creates an asynchronous 

computation/accelerator/communication task
• finish <stmt> waits for all tasks in finish scope

• Extend to remote asynchronous tasks 
• async at(<place>>) <stmt>
• send(<place>, <stmt>)

• Like an actor/selector model for HPC
• Relax barriers to point-to-point synchronization

• Dataflow, DAG parallelism, event-driven tasks
• Doacross
• Futures/Promises
• Phasers

• Move towards a Fine-grained-Asynchronous 
Bulk-Synchronous Parallelism (FA-BSP) model

• “A Fine-grained Asynchronous Bulk Synchronous parallelism 
model for PGAS applications”, JCS 2023.

Preparing for an Asynchronous Future in HPC

From “What’s in it for the Users? Looking Toward the HPCS Languages 
and Beyond”, D. Bernholdt, W.R. Elwasif, Robert J. Harrison, PGAS 2006



Jaccard Benchmark using Actors/Selectors

5



• Selector version is faster than Sparse Jaccard-CTF (SCALE=14, Strong Scaling)
• Performed in-depth performance comparisons

• Key takeaways
• The CTF version suffered from significant load imbalance mainly in MPI all-to-all ops
• MSGCNT and MSGBYT decrease as # of PEs increases in Selector. This is not case with 

CTF version in part because it occasionally performs all-to-all ops for redistribution.
• We also saw significant decrease of other HPWCs in our version (next slide)

6

Preliminary Strong Scaling Results for Jaccard on Perlmutter

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

3E+10

64 128 256 512 1024 2048 4096 8192 16384

Number of Cores

Message Bytes * #Cores

Selector CTF



Preliminary Results (contd)

• Other HWPC counter numbers 



You can try this at home … just visit hclib-actor.com !

8



• Replace synchronous algorithms by asynchronous algorithms

• Replace task sequencing by asynchronous tasks with task dependences

• Replace blocking accelerator kernel offloads by asynchronous offloads

• Replace blocking communications by asynchronous/nonblocking communications, 

including actor messages

• Replace barriers by point-to-point synchronization

• DAG parallelism, Dataflow, Event-driven tasks, Doacross, Futures/Promises, Phasers 

• This trend can also be seen at the OS level (e.g., io_uring asynchronous I/O API for Linux) 

and is motivating a fresh look at the hardware level (e.g., asynchronous circuits bridging 

heterogeneous processors)

• The move towards an asynchronous future for HPC is well under way!

9

Conclusion: Prepare for an Asynchronous Future!


