
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

High Performance Multiphysics Applications in the 
Post-Exascale Era 

Robert N. Rieben
With input from: T. Bailey, T. Stitt, D. Hawkins, C. Jekel, J. Belof, D. White, D. Sterbentz, J. Bramwell, K. Korner, W. Schill

LLNL-PRES-847819



2

High performance computing is essential for predictive science 
at the NNSA

Our goal is to model and ultimately predict the behavior of complex physical systems

§ High-Performance Multiphysics Simulation
— Massively parallel, on-node and off 
— Adaptable, extendable codes
— Performance portability
— Multiple architectures and vendors

§ Multiple, Diverse Algorithms
— Arbitrary Lagrangian-Eulerian (ALE)
— Monte-Carlo
— Discrete Ordinates
— Smooth Particle
— Adaptive mesh refinement
— High-order methods

§ Integrated Applications
— Inertial confinement fusion (ICF)
— Pulsed power experiments
— Studying material properties in extreme conditions



3

Our codes are large, complex, tailored to our applications, and 
represent decades of investment

§ Millions of lines of code in multiple 
programming languages

§ Scale to O(1M) MPI ranks

§ Multiple spatial/temporal scales

§ Maintain connection to prior V&V efforts

§ Coordinate with 10–60+ libraries
§ 15+ years of development by large teams

§ Portable performance

— Laptops, Workstations, Commodity Clusters, 

Advanced Architectures (GPUs), Cloud

Inertial Confinement Fusion HE Cookoff Navy Railguns Additive ManufacturingFracture and Failure



4

§ Multiple codes, at various levels of maturity

— Biggest success with C++ codes

§ Multiple 3rd party libraries / modules

§ Collaboration, organization, regular coordination discussions

§ Code projects maintain independence to specialize when necessary, adopt 
common tools

— Portability abstraction layers (RAJA suite) essential for success

§ Computer Scientists have led the detailed technical R&D for Sierra

§ Code Physicists focused development on most impactful application space

At LLNL, we have invested in single source, performance 
portable HPC multiphysics codes over the past 7 years

Preparing for the Sierra GPU system improved our ability to collaborate across the Lab



5

We have achieved breakthrough performance gains on GPU 
architectures across multiple codes

ALE3D

Shaped Charge
8x speedup

Ares

ICF RT Mixing
13x speedup

Ardra

Reactor Analysis
16x speedup

We intend to capitalize on these gains in the post exascale era

Goal 1: 
ü Complete today’s 3D 

calculations in a workday

Goal 2: 
ü Make today’s heroic 

calculations ordinary

Goal 3: 
ü Establish a new standard 

for heroic calculations 
through unprecedented 
numerical resolution



6

In addition to refactoring our existing codes, we have stood up a 
NextGen production code, MARBL

*R. Rieben, K. Weiss et. al., "The Multiphysics on Advanced Platforms Project. LLNL report," LLNL-TR-815869, December 2020.

• Next-gen ICF, pulsed power code
• Part of MAPP: Multiphysics on Advanced Platforms Project*

• Multiphysics capabilities to date:
• Multimaterial compressible ALE hydrodynamics

• Radiation-hydrodynamics

• 3T plasma physics + TN burn

• Resistive MHD

• RANS turbulence models 

• High-order numerical methods
• Higher FLOP/byte, improved GPU throughput

• GPU performance
• >15X GPU vs CPU node speedup 



7

As part of the ASC ATDM program, portable performance on 
advanced architectures has been a key focus for MARBL

ü Scaled to half of Sierra (2048 nodes)

• IBM Power9 CPU + NVIDIA V100 GPU

ü Scaled to all of Astra (2496 nodes)

• Cavium Thunder X2 CPU (ARM)
ü Scaled to most of EAS3 (32 nodes)

• AMD EPYC CPU + MI250X GPU

• Early access El Capitan system

§ >15x GPU speedup compared to LLNL’s 
“commodity” (CTS) hardware

§ Speedups are measured node-to-node

See: A. Vargas et. al, “Matrix-free approaches for GPU acceleration of a high-order finite element hydrodynamics application using MFEM, Umpire, and RAJA, ” Int. J. HPC Apps.

Work of T. Stitt



8

Algorithms matter: partially assembled “matrix free” methods 
perform better at high-order on GPUs

High-order elements 
yield higher throughput

§ MARBL uses “partial assembly” for 
high-order finite element operators* 

§ No full assembly of mass/stiffness 
matrices

§ Instead, compute operator action on 
vectors

§ Has minimal data motion

§ Improved performance at high order, 
especially in 3D on GPUs

*See: A. Vargas et. al, “Matrix-free approaches for GPU acceleration of a high-order finite element hydrodynamics application using MFEM, Umpire, and RAJA, ” Int. J. HPC Apps.



9

We have been exploring use of cloud compute resources for our 
multiphysics applications

• We are exploring cloud HPC as part of an 
MOU between LLNL and Amazon AWS

• Containerized MARBL code has no 
performance degradation compared to 
standard binary

• We have scaled containerized MARBL on 
AWS out to 300 nodes (28,800 cores)

Cluster CPU GPU Interconnect

AWS
C5n.18xlarge

2x18 core
Intel Skylake

-
AWS EFA

AWS
HPC6a.48xlarge

2x48 core
AMD Milan

-

AWS
P4d.24xlarge

2x24 core
Intel Cascade 

Lake

8xNVIDIA
A100-40GB

LLNL CTS-1 2x18 core
Intel Broadwell

- Cornelis Networks
Omni-Path

LLNL CTS-1

C5n

HPC6a

P4d

Work of D. Hawkins



10

There are several appealing aspects of utilizing cloud compute in 
combination with our on-premise HPC

Node Type CPU Memory GPU

LLNL ATS-2 IBM POWER9 (2x22 core) 256GB 4 x NVIDIA V100-16GB

LLNL EAS-3 AMD Trento (1x64 core) 512GB 4 x AMD MI250X-128GB

AWS P3dn.24xlarge Intel Skylake (2x24 core) 768GB 8 x NVIDIA V100-32GB

AWS P4d.24xlarge Intel Cascade Lake (2x24 core) 1152GB 8 x NVIDIA A100-40GB

• Containerized code can readily be 
deployed in GovCloud for certain 
workloads

• We can easily explore alternate node 
configurations 

• User workflows can be customized by 
compute needs

• Cloud tools for ML can be leveraged Work of D. Hawkins



11

We are combining MARBL simulations with machine learning to 
enable optimization driven workflows

differentiable 
surrogate

workflow manager



12

Cloud computing is well suited for 2D ML ensemble studies 
where simulation throughput is important

§ High velocity impact target optimization
§ ML model trained on ~3K MARBL simulations

— 600 MB data/simulation, extracted using Ascent
— 51 time snapshots/simulation

§ Inputs:
— 4 spline parameters, flyer velocity and time

§ This model was trained in AWS GovCloud
— 300 nodes, 3K simulations done <1hour

CPU node for 
2D simulations

GPU node for ML 
training

Lustre file system 
for simulation 
training data Work of C. Jekel

Video showing real-
time inferencing of 
ML model in time 

and parameter space



13

Our pursuit of computational performance is not stopping

§ Hardware performance may be stagnating

§ However, Moore’s law can be interpreted in 
a more abstract way
— Exponential growth in compute come from using 

current tech generation to accelerate development 
of next generation

§ Keys to continued performance:
— Build on success of previous technology cycle

— Verified/validated multiphysics codes become a 
building block in a bigger piece of software

— Every calculation will be an ensemble

We see ample opportunity for more performance gains coming from software and algorithms



14

We believe the key to unlocking future performance gains will 
come from gradient based optimization

§ Purely data driven approaches are not a viable substitute for our simulation codes

§ Experimental data is expensive to generate and insufficient to cover our uncertainties

§ We often use our codes to produce training data for surrogate models

§ However, there is much to gain from the world of AI / ML …



15

Multiphysics codes combined with ML models can be used to 
explore high-dimensional design space 

sim
ulation tim

e

deflector shape
parameterization

ML Surrogate Trained on Data Gradient-Descent on Surrogate

§ For a planar shaped charge, we 
can optimize deflector geometry 
to maximize jet penetration

§ The ML model maps design 
parameters to penetration depth

§ Model training requires O(10k) 
MARBL simulations

Work of D. Sterbentz, D. White



16

Gradient-enabled multiphysics simulation codes will allow much 
larger design space explorations

ü Can use existing simulation tools
ü Non-intrusive for code
ü Good for exploration
• Requires many simulation samples
• Limited to O(10) design parameters

Black Box (Gradient-Free)

ü Can use existing simulation tools
ü Non-intrusive for code
ü Surrogate has gradients
• ML training can be expensive
• Hard to modify design space
• Limited to O(10) design parameters

ML Surrogate

ü Large parameter space, O(1M) 
ü Fast convergence
ü Agile parameterizations
ü Provable local optimality
• Requires gradients
• Code Intrusive

Gradient-Based

Present (Data Driven) Future



17

Backpropagation and automatic differentiation are powerful 
techniques we can adapt from the ML community

From: Physics-Based Deep Learning for Flow Problems http://dx.doi.org/10.3390/en14227760

Neural Network Trained using Back Propagation

…

…

Forward Pass:

Objective

Backward Pass in time:

Simulation Gradients using Back Propagation

Sp
at

ia
l G

rid

§ AI/ML revolution powered by backpropagation/automatic 
differentiation (AD) on complex models

§ We can leverage these techniques for generalized adjoint solvers 
for non-linear multiphysics



18

Enabling AD in a multiphysics code stack will be a grand 
challenge

<latexit sha1_base64="KiE1/KxgkRLbRVfZH2Ydbz2k/pk=">AAACUHicbZDLSsNAFIZP6q3WW6tLN8EiuAqJiLosunFZwV6gLWUyPWmHTjLDzEQsoa/hVp/JnW/iTidtBW17YJif71z5Q8mZNr7/6RQ2Nre2d4q7pb39g8OjcuW4qUWqKDao4EK1Q6KRswQbhhmObamQxCHHVji+z/OtZ1SaieTJTCT2YjJMWMQoMRZ1s64kyjDC+y/Tfrnqe/4s3FURLEQVFlHvVxyvOxA0jTExlBOtO4EvTS/LJ1KO01I31SgJHZMhdqxMSIy6l82OnrrnlgzcSCj7EuPO6N+OjMRaT+LQVsbEjPRyLofrcp3URLe9jCUyNZjQ+aIo5a4Rbu6AO2AKqeETKwhVzN7q0hFRhBrr09otyzA/WC9RPhR21ihewVJjal0SA8wdDpb9XBXNSy+49q4er6q1u4XXRTiFM7iAAG6gBg9QhwZQkPAKb/DufDhfznfBmZf+/nAC/6JQ+gExt7aS</latexit>

@x

§ Multiphysics codes are complex software stacks
§ We need to decompose the problem into 

manageable pieces

§ Partially assembled FE methods offer a 
natural insertion point for AD

§ Need to differentiate at Q-points only!

§ Differentiate the Q-function D with AD tools

T-vector L-vector E-vector Q-vector

global domain
all (shared) dofs

sub-domains
device (local) dofs

elements
element dofs

quadrature
point values

P

PT

G

GT

B

BT

D

<latexit sha1_base64="ttrnzGD55Rt+PxjvcBQki5HfRc4=">AAADhnicbVJdb9owFHWafTD2RbfHvVitkFotQvGghaqaxBgSe9gDm6CtRFLkGANW8yXbQUWZ3/cD9uf6B/Y75pBsg7TXinR0zr3H17nXi30mpG3fGXvmo8dPnlaeVZ+/ePnqdW3/zYWIEk7omER+xK88LKjPQjqWTPr0KuYUB55PL72bz5l+uaJcsCgcyXVM3QAvQjZnBEtNTWu/q46kt3JjlA5V6oTY8/E0TZSCu8ondbRLJOq8lOLwZaSOP8KS5/B6pODgerSd3VNpL6Mda5vt/2/AWWKZdaFKen+njaygSLRg2SkTNi2p42nt0G7Ym4D3ASrAYffAef/rrrseTveNn84sIklAQ0l8LMQE2bF0U8wlIz5V1XrdSQSNMbnBCzrRMMQBFW66uV7BumZmcB5x/YUSbtjqQxXWbMVikUOxWuRA6n9A3fQ2N9uuS3EgxDrw9A0BlktR1jLyIW2SyHnHTVkYJ5KGJG9wnvhQRjDbCzhjnBLprzXAhDP9SkiWmGMi9fZUnRmd6w37N9LvAz1A1Dy1mk0LtdWuPih029KnpPUKrWVbZy0LnZRr+3+9W9q4g6xOU+nZofKk7oOLDw102kDf9BB7II8KeAcOwBFAoA264AsYgjEgxleDG6nxw6yYDfPEbOepe0ZR8xbshNn9A+OMKog=</latexit>

ruA(u; ⇢) = PTGTBT rûD(û, ⇢̂)

LLNL mfem project is 
exploring AD using the 

Enzyme library



19

§ Refactoring an existing, long-standing code base is a daunting challenge
— GPUs were a disruptive technology for our existing codes

§ We have successfully refactored multiple, large scale production codes for GPUs
§ Integrating AD into our multiphysics codes will be a similar challenge

— We have new codes with AD built in from the start (LLNL Smith project)
— We will need to integrate AD into all 3rd party libraries
— We will need software abstraction layers, much like performance portability abstractions

• 3rd party library APIs updated to include passing gradients

— One size will likely not fit all, we need to embrace multiple paths
• AD at compiler level, dual numbers, finite differences, analytic gradients

Enabling AD in a multiphysics code stack will be a grand 
challenge … similar to our GPU transition

We can meet the challenge using the same approaches which brought success on GPUs



20

§ We have invested in single source, performance portable HPC multiphysics codes 
over the past 7 years

§ We have achieved breakthrough performance gains on GPU architectures
— We intend to capitalize on these gains in the post exascale era

§ There are appealing aspects of cloud compute in combination with on-premise HPC

§ Our pursuit of computational performance is not stopping

§ We believe the key to unlocking future performance gains will come from gradient 
based optimization

Conclusions and future outlook


