
Performance Portability is (sort of) a Lie

Jonah Miller

Los Alamos National Laboratory

Salishan Meeting for High-Speed Computing

Parthenon

Growing international collaboration

Meshblocks appear to be “uniform grids” on which applications
can be built:

Memory locality easier to enforce
Complexity can be “lifted” out of inner loops
Convenient serializable data structure for tasking
Convenient prototyping platform

Join us: https://github.com/lanl/parthenon

J. Miller (LANL) Performance Portability Salishan 2 / 11

https://github.com/lanl/parthenon

Applications/Downstream Codes

Phoebus, neutron star

Athena-PK, turbulence

Riot, triple point

Grete, JMM, et al., ArXiv:2202.12309
J. Miller (LANL) Performance Portability Salishan 3 / 11

Kokkos and Performance Portability

Parthenon uses Kokkos for performance portability

Select target architecture at compile time, templates specialize to
resolve to code for target architecture

Edwards, Trott, and Sunderland, 2014

J. Miller (LANL) Performance Portability Salishan 4 / 11

Looping, Memory Locality, Vectorization

Kokkos exposes different loop patterns, such as manually
flattened, hierarchical parallelism, etc

These patterns have significant effect on performance

On CPU, hand-optimized simd loops are fastest. On GPU,
manually unrolled 1D loops.

Grete, Glines, O’Shea, 2021

J. Miller (LANL) Performance Portability Salishan 5 / 11

Asynchronicity Vs. Latency

To handle load imbalance, task-based framework expresses work in
tasks, which are localized to operate on pieces of data

Requires overdecomposition so that tasks/data can be moved
accross cores/workers

In Parthenon, tasks operate on meshblocks, which are discrete
pieces of the mesh

Problem: Launching a task costs ∼6 µs on GPU

Charm++ Team

J. Miller (LANL) Performance Portability Salishan 6 / 11

Algorithmic Change—Meshblockpacks

Solution:
Coalesce GPU
kernels accross
meshblocks

This comes at a
price: coalescence
exposes less
asynchronicity

Number of
coalesced kernels is
run-time tunable
and can be
programmed
per-task

Grete, JMM, et al., ArXiv:2202.12309

J. Miller (LANL) Performance Portability Salishan 7 / 11

Measured Overhead

6

“real” cells

?

ghost cells Measured decomposition of 2563 grid

Grete, JMM, et al., ArXiv:2202.12309

J. Miller (LANL) Performance Portability Salishan 8 / 11

Scaling

Weak Scaling

108

109

zo
ne

-c
yc

le
s/

s/
no

de

100 101 102 103 104

nodes

0.0

0.5

1.0

pa
ra

lle
l e

ff.

SummitGPU
SummitCPU
BoosterGPU
BoosterCPU

Ookami
Frontera
FrontierGPU

Strong Scaling

108

109

zo
ne

-c
yc

le
s/

s/
no

de

100 101 102 103

nodes

0.0

0.5

1.0

pa
ra

lle
l e

ff.

SummitGPU
SummitCPU
BoosterGPU
BoosterCPU

Frontera
FrontierGPU (small)
FrontierGPU (large)

Grete, JMM, et al., ArXiv:2202.12309

J. Miller (LANL) Performance Portability Salishan 9 / 11

Performance Portability is (Sort of) a Lie

A bet against a software stack in flux.

Enables code that compiles on lots of architectures with little
effort.

But just because your code compiles, doesn’t mean it’s fast!

True performance requires thinking about the algorithm and
tuning it to the hardware you’re running on.

We found a great deal of success exposing tuning parameters
within the infrastructure.

Great wins to be had, both on-node and at scale.

J. Miller (LANL) Performance Portability Salishan 10 / 11

Where you can find this work

This work is mostly from a series of two papers:

arXiv:1905.04341v2
arXiv:2202.12309
arXiv:2206.08957
More on the way!

Many authors contributed to these works. The work of a
collaboration is presented here.

Questions? Want to get involved?

Email: jonahm@lanl.gov
Github: https://github.com/lanl/parthenon
Chat room: https:
//app.element.io/#/room/#parthenon-general:matrix.org

J. Miller (LANL) Performance Portability Salishan 11 / 11

jonahm@lanl.gov
https://github.com/lanl/parthenon
https://app.element.io/#/room/#parthenon-general:matrix.org
https://app.element.io/#/room/#parthenon-general:matrix.org

Applications/Downstream Codes

Codes built on top of or inspired by Parthenon (that we know of):

parthenon-hydro (MSU): Toy Fluid Solver in about 1000 lines,
https://github.com/pgrete/parthenon-hydro

Athena-PK (MSU): General-Purpose MHD solver based on
Athena++, https://gitlab.com/theias/hpc/jmstone/
athena-parthenon/athenapk

KHARMA (UIUC): Accretion disks around black holes,
https://github.com/AFD-Illinois/kharma

AthenaK (Princeton): General relativistic radiation MHD,
targeting AGN disks, X-ray binaries. Not built on top of
Parthenon, but heavily inspired by it.

Phoebus (LANL): General relativistic radiation MHD, targeting
supernova, nuetron star mergers,
https://github.com/lanl/phoebus

Riot (LANL): Multi-material fluid dynamics for engineering
applications. Treats “real” materials, like dry air, steel, and wood.

J. Miller (LANL) Performance Portability Salishan 12 / 11

https://github.com/pgrete/parthenon-hydro
https://gitlab.com/theias/hpc/jmstone/athena-parthenon/athenapk
https://gitlab.com/theias/hpc/jmstone/athena-parthenon/athenapk
https://github.com/AFD-Illinois/kharma
https://github.com/lanl/phoebus

Advantages of Loop Abstractioon

We abstract out our loops, beyond the Kokkos abstraction

We can select Kokkos-based patterns, as well as hand-written
patterns

Can manually call out to simd, openmp, Cuda, SYCL, etc

Very flexible!

More importantly can pick the loop pattern most performant for a
given piece of hardware

Algorithmic details, such as loop pattern, must be varied accross
architectures!

J. Miller (LANL) Performance Portability Salishan 13 / 11

How Good Can We Possibly Do?

6

“real” cells

?

ghost cells Ghost cells needed for communication
between meshblocks.

Ghost cells filled at every stage by MPI
communication, direct copy, prolongation,
and restriction, depending on mesh
topology.

Number of layers depends on algorithm
used. Classic Gudonov needs 1 layer, but
high-order finite differences or constrained
transport may need as many as 4 layers.

Overhead, ratio of total to real cells:

Ov(N) =
(N + 2G)3

N3

If N large, Ov(N)→ 1

As N → 0, Ov(N)→∞

J. Miller (LANL) Performance Portability Salishan 14 / 11

In General, More MPI Ranks/Device is Better

Performance in 108 zone-cycles/second on 16 Summit nodes for
fixed mesh sizes and various options to distribute workload

Base grid: 2048× 1536× 1024 GPU, 1792× 384× 256 CPU

Multilevel mesh has refinened box with side length 0.4 (base grid
has side length 1)

Multiple MPI ranks per GPU enabled with NVIDIA MPS

Behaviour maybe explained by heterogeneity—CPUs can do
infrastructure work while GPUs do physics work.

Grete, JMM, et al., ArXiv:2202.12309

J. Miller (LANL) Performance Portability Salishan 15 / 11

Performance Portability

In the end we found good performance accross a wide range of
devices and architectures

Typical uniform grid workload in Parthenon-Hydro, in 108

zone-cycles/device-second:

Grete, JMM, et al., ArXiv:2202.12309

J. Miller (LANL) Performance Portability Salishan 16 / 11

Of Course, Each Machine is Unique

Grete, JMM, et al., ArXiv:2202.12309

J. Miller (LANL) Performance Portability Salishan 17 / 11

Other Optimizations Performed

Coalesce memory allocations, especially at mesh refinement

Optimize loop structure, especially for buffer packing

Data structures that ensure memory locality

To encourage vectorization, minimize branching and indirection

J. Miller (LANL) Performance Portability Salishan 18 / 11

