Memory-Centric
System Architecture

Pankaj Mehra

Founder

Outline:

1.

2

Memory, a pre-virtualization resource

2. Devices don’t disaggregate well
38
4. Baby steps Special Theory of Data Gravity

Introducing fluxy: needs VA, cross-device

» Memory Objects
Principles of Memory as a Service
Anticipated Benefits

7. Charting a course

Memory is the
last remaining
wild cat in the
otherwise orderly
world of data
centers

Pankaj Mehra
IEEE Santa Clara Valley Chapter Industry Spotlight talk (2022)

https://youtu.be/QxbeGBOoQXI

The pain that is Data Center Server DRAM

DC BoM New Memory? Short supply
Decades to introduce. Bit growth outpaced
Build then find out. by demand, LTAs.
Pre-virtualization Hard to Sell Hard to Use
The last such 20-30% of memory 75% of the apps use <25%
resource in SDDC deployed but cannot be sold of their provisioned memory

Conseguences: Cloud Markup on DRAM CapEx 3

AWS Pricing ($/hr) @ AWS Instance Type §@ DRAM (GB) R Instance Price ($/yr)

B4 Implied DRAM ARR $ /8

On-demand Cé6i.large
S0.09 L. 4 S 745.11
(compute-optimized)
Ré6i.large
0.13 16 1,104.52
? (memory optimized) > ! S 29.95

Other resources
identical

2 VCPUs

Apt comparison between
general purpose and
memory optimized
instance

x2gd.large
$0.17 (memory optimized) 32

$ 1,463.92

S 22.46

May 19, 2022 Copyright (c) 2022, Pankaj Mehra

Apt comparison between
two memory optimized

instance (x86 vs Arm

difference)

DDR:Current Practice in Memory Attach

. Current Practice in Remote Memory Access

Devices have a
“Mother, may 17~
relationship with
the OS and will
not disaggregate
well.

Case in point:
» Staff of 5 in a 100K-server data center

* Threats:
Memory leaks? Unzeroed memory after Guest OS crash?

* Opportunities:
CXL 3. Data Gravity. Independently scale compute & mem

Optimize for each Deployment

Vs Fungible Far Memory

Peak allocation, Peak deployment
High effort of porting and scaling

High cost of scaling out for memory

Inefficient scale-out
communication

Mem Sold/Deployed (< 80%)
Mem Utilized/Deployed (< 66%)

GB-sized RPCs

Vs Infrastructure-Integrated
* Eagerly fetch

* More data than required

* More often than required

NW and Host Cache Pollution: 90+%

CPU LD-ST stall cycles: 30% (growing)

LD-ST optimizations lost: 97-99%

Location-based addressing

* Complex handling of pointers

* High latency to navigate
pointers

* No opportunity to address

data through (shipped)
functions

Serialization-bound RPC BW: 0.11 GB/s
Pointer-chasing latency 200ns = 1+ ps

Graph load time/Inference = 70%

CXL 1: Memory Capacity Expansion over PCle i

CXL 3 enables pooling & disaggregation

— _\/_ S

7 Disaggregated Memory Node

Disaggregated Memory Nodes (DMNSs)

 Memory deployment that avoids stranded resources
» Cost-effective expansion to petabyte scale memory pools
 Independent scaling of memory and compute capacity, BW

» CXL enables coherent accelerators near fabric memory

* New devices/APls/protocols needed due to higher latency

SW Implications of Disaggregated Memory

Requirements Optimizations

* Data at a Distance * Data Gravity, Function Shipping

* Accessed from >1 Servers * Minimize/eliminate Serialization
* Accessed from CPUs, GPUs, ... * Maps efficiently into existing CPU

Memory Management
 Maximize hardware data path

11

OS Evolution in response to CXL: No Perfect Answers

Linux and the rest of the software ecosystem is co-evolving with CXL, esp. HMM
Solutions need to span data and control planes, scale-up and scale-out

Versus pmem, CXL has wider adoption and could see deeper investment in compilers and CPU-native
optimizations to complement device-side features

Data Plane Control Plane
AU Bie e ilile Data Placement IRV 72 0]

Libraries
OS Mem Mgt
Intrinsics M dev-dax
Registers Mailboxes
Scale Up Scale Out

Paralielism Distributed Systems Fabric Manager

In-Band

software
performance

Memory as a Service

Elephance does for Memory
what S3 did for Storage

Elephance MemOS™ An Operating System for Disaggregated Memory Nodes

Device-Side MemOS™

allow graph functions (such as convolve @N1)
runs here

to be defined and shipped to the device as
easily as operating on that graph data from far

to manage this memory locall
memory locally .

Global pointers allows subgraphs
to be created and manipulated
as memory objects

|/ Disaggregated Memory Node
at xPUs and devices

14

view V,

MemOS under the hood _ Allc

rw- rw- r--

' \>// MMU translation

* Translation context disaggregated from process, security p
moved into Memory Objects with 128b ids that Slrre e
are themselves easily embedded inside pointers

- EPT translation

Physical

that traverse very large address spaces Memory

Efficient representation and fast manipulation of Ephemeral state and

context management (view)
application ephemeral
instance virtual
state mappings

local pointers (intra-object) in 1s nanoseconds

persistent
data

Scalable persistent representation and fast
manipulation of non-local pointers (linked data) St ovlect Tees Address Space

i i i indi i i 11 B | rw- A B Vv
using a Fprelgn.OpJect Table for indirection in = T N I S
every object within 10s nanoseconds

Pointer Foreign Object Table
1 ObjectB

offee z—J

s ¢ [flags |

https://www.usenix.org/conference/atc20/presentation/bittman

Memory as a Distributed Service
from Disaggregated Memory Nodes

P

- — .

Device-Side OS ...
runs here runs here
to manage this memory to manage this memory
HEN
16

Far Memory as a Distributed Service
from Disaggregated Memory Node

Memory Objects map efficiently into host CPU
caches and virtual memory maps allowing LD-
ST accesses to non-pointer data to use an all-
hardware data path (with or without
coherence)

Global Pointers resolved with low SW
rhead

... as pointers that are valid globally

Device-Side OS ...
exposes memory objects

that hold application data

These graphs can represent
... and exposes the data linkages both function and data

within and between memory objects

17

Workloads: Recommenders, GraphDB, and ML

Healthcare, Retail and Banking build Enterprise Knowledge Graphs to power real-time context-mediated experiences

e EKG scales: 10° vertices » 1010
edges * 107 updates/d ¢ 60s
CDC « 25K concurrent users °
100ms response

e Aslittle as 0.1% gain in ML
model accuracy (e.g. CTR
prediction) materially adds to

corporate revenue o> IndatabasemL
- with large models

EKG: Enterprise Knowledge Graph. CTR: Clickthrough Rate. ESG: Env
Sustainability Governance. SCM: Supply Chain Mgmt. HLS: Health & Life
Science. FSI: Financial Services Industry. CDC: Changed Data Capture.

An illustrative interface for /
Disaggregated Memory Nodes! Graph Storage and Processing Engines:
Data in memory for real-time experience and monitoring

Modern Workloads

Richly linked data structures widely used in modern
applications, increasingly so

Chasing pointers is very inefficient in general-purpose
processors, even worse when memory is farther

Offloading pointer-chasing to near-memory processors
brings its own set of challenges such as limited
parallelism and virtual-to-physical translation

When graph-structured functions work on graph data

Loopy . . Branchy Fluxy

®
In DOE mini-apps,

FP instructions comprise 9-28% Branch and control instructions integer instructions (mean 29.5%)
(mean 15.5%) (mean: 9.5%) and memory instructions (45%)

of all executed instructions

majority of integer instructions are
used to calculate memory addresses

Prior DOE Research: What HPC programs really “do” is not floating-point, but memory

Fluxy is no friend of CPUs and GPUs

DOE: Caches, our primary architectural mechanism to reduce latency and improve effective bandwidth, are not well
utilized. Many (64b) words which are brought in to the L1 cache are never touched before the cacheline is evicted. In
three of the four applications, for every cacheline of eight words that is brought in to the L1, less than 5.6 words (mean)
were used before the line was evicted. Worse results when prefetching is on.

1e7 Kripke Historgram: Words Touched / $line before evict

1e7 MiniMD Historgram: Words Touched / $line before evict
1e7 hpgmg Historgram: Words Touched / $line before evict 108 XSBench Historgram: Words Touched / $line before evict

Mean: 5. Mean: 5.

161 8
144 Mean: 5. 74 Mean: 7.
H >
.
.
o 2 4 [] 8 0 2 4 & 0 2 4 [8
Words Touc G Words Touched

Words Touched

Prior DOE Research: Just as it is reasonable to say that HPC programs really “do” memory, it is also
reasonable to say that we do it somewhat poorly.

Pointer-Heavy Code Sections in Analytics Workload

Eat up cycles Mess up caches Worth optimizing

Cycles per instruction . LLC miss cycle ratio loge, . EXecution time
‘D [I_I-'.il

B0
60%%
40%
20%%
Ve 0%
Memcached DBx1000 Memcached DEBEx1000 Memcached DBx1000

B Pointer Chasing [J Rest of the Application

Such large-impact easy-to-offload operations represent an uncommon optimization opportunity

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf

Here is the pattern

Computational Far Memory as a Service
from Disaggregated Memory Node

APls and Language Bindings on the Hosts

[N N [] allow graph functions (such as convolve @N1)

to be defined and shipped to the device as
[] [] easily as operating on that graph data from far

Device-Side OS ...
allows subgraphs
to be created and manipulated
as memory objects

25

Global Memory References as a Service
from Disaggregated Memory Node

HE EH EE B — +o— =B

These pointers
can be passed
from host to host
to realize
efficient RPC
with passing of
function and
by referen

Device-Side OS ...
allows subgraphs
to be created and manipulated
as memory objects

... and exposes the data linkages
within and between memory objects

... as pointers that are valid globally

26

MemOS enables Computational Memory

 Low overhead, low coordination global address space via invariant pointers
« Enables data sharing and removes serialization
* Increases data and compute placement flexibility

 Invariant pointers aid pushing view of data graph lower in the stack
» Allows more effective offloading of FLUXY application-level functions

» Improves infrastructure-level software’s ability to optimize and to query plan
* Case in point: Densification for GPUs

src + delta

Cores and Acceleration IPs Stats offload with debug/tracing;
Computation graphs

On-device MMU Data graphs; pointer chasing; Iteration 0 Iteration 1
Flexible resolvers

Figure 2: A visual representation of the first two iterations of the

gather kernel with a uniform stride-2 index buffer of length 4, and a
delta of 1.

.mem MH Data Coherence Low overhead global addressing;
Transactions

.cache 1-writer coherence Pipelining; Serialization avoidance

~lelo]

o-|-.||4
=|wia

Offloading FLUXY: Local Convolution dfat
()

Convolution in CNN

Localized Convolution in GNNs

DMN chases pointers,
Retrieves neighbor node,
Retrieves local property,
Calculates filter polynomial
Returns convolved values

CPU chases pointers,
Retrieves neighbor node,
Retrieves local property,
Calculates filter polynomia

28

24 April 2023 Copyvriaght (c) 2021. Pankaj Mehra

MemOS offloads Cross-Device/Object Pointer Chasing

Cache Client Sarver 1 Sarver 2 Cacha Client Server 1 Server 2 Cache Client Sarver 1 Sarver 2

e B
T = - -

(a) /O-only interface. (b) Predefined keys. (c) Ideal interface.

Especially useful for neighborhood operations on graphs
that have been sharded for scale across compute nodes
such as search-accumulate, PageRank, convolutions

Phil Bernstein, Microsoft Research

Cores and Acceleration IPs

On-device MMU Data graphs; pointer chasing;
Flexible resolvers

.mem MH Data Coherence Low overhead global addressing;
Transactions

.cache 1-writer coherence Pipelining; Serialization avoidance

Deep Ecosystem Engagement. High Initial Customer Interest

End users

N <SNVIDIA.
ss<snowflake|Sh anyscale (HEIINIJRVSNY) anvio

»
rRambus]

E MARVELL] |

o]

Multi-cloud Data Infrastructure ISV

CSPs, Server OEMs

DRAM fabs
(DIMM vendors)

Interface chip |

\
Elephance ‘

Addressing the 4-27B TAM market of memory in Data
Management servers with a win-win-win value proposition.

Facebook Payments Developer: “I would use it right now”
Nvidia VP of CUDA: “Your software will make GPUs more efficient”
Snowflake Co-founder: “We will use it when available in AWS”

HPC Community: Our first broad exposure here

From Devices to Services

Exploiting Integration, HlI Computational Memory. Memory as a Service
Services Information Cloud
Service & pServices Objects
SDN APls Metadata Topologies
Software Data Routes
0s Metabits End points
Py
%
%
({y)
control state flow
Intelligent Connected With the memory industry and hyperscalers:

- How much near-memory processing?

- Fixed function vs programmable esp. with VAs
- Data-path: More efficient promotion/demotion
- Control: Better use of finite MMU resources

- Low-overhead hotness tracking

Bits, CMS Bits, RDMA

Feature Summary: How Elephance enables Memory aaS

High Performance Flexible Remoteable Pointers
= Native 64b pointers
= Minimize swizzling overheads
= Valid everywhere in space and time
2. Easy to Flex Compute Up and Down
= New compute can just declare and use
= Minimize [de]serialization overheads
= No need to keep compute fired up
3. uServices point to data in DMN, not copy it around
Existing microservices benefit right away

Minimize/Eliminate unnecessary copying,
resulting cache pollution, BW abuse

Minimize [de]serialization overheads

€ > C @& sitesgooglecom/ucscedu/cxl-sig-led-by-pankaj-meh... @ & %

Next weekly Mar 13 1pm in E2-399 and on

= [SANTACARIL CXL SIG led by Pankaj Mehra

discuss trends, problems, and opportunities arising from CXL-enabled disaggregation in the data-center. Our

leaders covering CXL-related topics spanning low-level cache and micro-architecture concerns up to sy
applications and algorithms_ Panelists included (click on the panelist's name to see slides where available)-

® Pankaj Mehra, Elephance Memory & UC Santa Cruz (moderating)

® Suresh Mahanty, SK hynix

® KC Ryoo, Samsung

" Craig Hampel, Rambus

® Frank Hady, Intel

® Nathan Kalyanasundharam, AMD

m Priya Duraisamy, Google

® Phil Bernstein, Microsoft

= Daniel Bittman, UC Santa Cruz

® Sharad Singhal, HPE

® ke Nassi, TidalScale & UC Santa Cruz

® Andrew Quinn, UC Santa Cruz

The panel focused on CXL-attached memory as opposed to CXL-attached accelerators. CXL-attached memon
of challenges: It increases DRANM’'s memory path latency compared to traditional interfaces (e.g., DDR), exp:
the memory hierarchy by exposing a wider array of non-uniform memory accesses, and imposes complex s
responsibilities on devices. In light of these challenges, the panel focused on two broad topics. First, what

bring that incentivize working the use of CXL in spite of these challenges? Second, what technigues can

Thank You

pankaj.mehra@ElephanceMemory.com

Architectural and Operating System Support for Virtual Memory

	Slide 1: Memory-Centric System Architecture
	Slide 2: Memory is the last remaining wild cat in the otherwise orderly world of data centers
	Slide 3: The pain that is Data Center Server DRAM
	Slide 4: Cloud Markup on DRAM CapEx
	Slide 5: DDR: Current Practice in Memory Attach RDMA: Current Practice in Remote Memory Access
	Slide 6: Devices have a “Mother, may I?” relationship with the OS and will not disaggregate well.
	Slide 7: Current Practice: Memory as a Device
	Slide 8: CXL 1: Memory Capacity Expansion over PCIe
	Slide 9: CXL 3 enables pooling & disaggregation
	Slide 10: Disaggregated Memory Nodes (DMNs)
	Slide 11: SW Implications of Disaggregated Memory
	Slide 12: OS Evolution in response to CXL: No Perfect Answers
	Slide 13
	Slide 14: Elephance MemOS™ An Operating System for Disaggregated Memory Nodes
	Slide 15: Invariant Pointers for Disaggregated Memory Invariant under N-S or E-W data movement, meaningful rendezvous with function shipped to device
	Slide 16: Memory as a Distributed Service from Disaggregated Memory Nodes
	Slide 17: Far Memory as a Distributed Service from Disaggregated Memory Node
	Slide 18: Workloads: Recommenders, GraphDB, and ML Healthcare, Retail and Banking build Enterprise Knowledge Graphs to power real-time context-mediated experiences
	Slide 19: Modern Workloads
	Slide 20: When graph-structured functions work on graph data
	Slide 21: Fluxy is no friend of CPUs and GPUs
	Slide 22: Pointer-Heavy Code Sections in Analytics Workload
	Slide 23: Here is the pattern
	Slide 24: Key challenges of offloading Fluxy to Devices:
	Slide 25: Computational Far Memory as a Service from Disaggregated Memory Node
	Slide 26: Global Memory References as a Service from Disaggregated Memory Node
	Slide 27: MemOS enables Computational Memory
	Slide 28: Offloading FLUXY: Local Convolution
	Slide 29: MemOS offloads Cross-Device/Object Pointer Chasing
	Slide 30: Deep Ecosystem Engagement. High Initial Customer Interest
	Slide 31: From Devices to Services
	Slide 32: Feature Summary: How Elephance enables Memory aaS
	Slide 33
	Slide 34
	Slide 35

