
For presentation at

Salishan Conference

on Apr 25, 2023

Copyright © Pankaj

Mehra, except noted

Memory-Centric
System Architecture

Pankaj Mehra
Founder

Outline:

1. Memory, a pre-virtualization resource

2. Devices don’t disaggregate well

3. Introducing fluxy: needs VA, cross-device

4. Baby steps Special Theory of Data Gravity

• Memory Objects

5. Principles of Memory as a Service

6. Anticipated Benefits

7. Charting a course

Memory is the
last remaining
wild cat in the
otherwise orderly
world of data
centers

Pankaj Mehra
IEEE Santa Clara Valley Chapter Industry Spotlight talk (2022)

https://youtu.be/QxbeGBOoQXI

The costliest
resource in DC

The costliest
resource in DC

DC BoMDC BoM

The pain that is Data Center Server DRAM

Decades to introduce.
Build then find out.
Decades to introduce.
Build then find out.

New Memory?New Memory?
Bit growth outpaced
by demand, LTAs.
Bit growth outpaced
by demand, LTAs.

Short supplyShort supply

The last such
resource in SDDC

The last such
resource in SDDC

Pre-virtualizationPre-virtualization
20-30% of memory
deployed but cannot be sold
20-30% of memory
deployed but cannot be sold

Hard to SellHard to Sell
75% of the apps use <25%
of their provisioned memory
75% of the apps use <25%
of their provisioned memory

Hard to UseHard to Use

3
Consequences:

4

Cloud Markup on DRAM CapEx
Sizing the Opportunity

May 19, 2022 Copyright (c) 2022, Pankaj Mehra

DDR:Current Practice in Memory Attach
RDMA: Current Practice in Remote Memory Access
DDR:Current Practice in Memory Attach
RDMA: Current Practice in Remote Memory Access

Devices have a
“Mother, may I?”
relationship with
the OS and will
not disaggregate
well.

Case in point:

• Staff of 5 in a 100K-server data center

• Threats:
Memory leaks? Unzeroed memory after Guest OS crash?

• Opportunities:
CXL 3. Data Gravity. Independently scale compute & mem

• Peak allocation, Peak deployment

• High effort of porting and scaling

• High cost of scaling out for memory

• Inefficient scale-out
communication

• Eagerly fetch

• More data than required

• More often than required

• Complex handling of pointers

• High latency to navigate
pointers

• No opportunity to address
data through (shipped)
functions

Current Practice: Memory as a Device
Despite rising costs, stranding. Despite ever increasing throughput, low goodput. Complex optimization.

Optimize for each Deployment Application agnostic (LD-ST) Location-based addressing

Vs Fungible Far Memory Vs Infrastructure-Integrated Vs Developer-friendly Managed Memory

M

e

t

r

i

c

Mem Sold/Deployed (< 80%)

Mem Utilized/Deployed (< 66%)

GB-sized RPCs

Mem Sold/Deployed (< 80%)

Mem Utilized/Deployed (< 66%)

GB-sized RPCs

Serialization-bound RPC BW: 0.11 GB/s

Pointer-chasing latency 200ns → 1+ μs

Graph load time/Inference = 70%

Serialization-bound RPC BW: 0.11 GB/s

Pointer-chasing latency 200ns → 1+ μs

Graph load time/Inference = 70%

NW and Host Cache Pollution: 90+%

CPU LD-ST stall cycles: 30% (growing)

LD-ST optimizations lost: 97-99%

NW and Host Cache Pollution: 90+%

CPU LD-ST stall cycles: 30% (growing)

LD-ST optimizations lost: 97-99%

CXL 1: Memory Capacity Expansion over PCIe

CXL 3 enables pooling & disaggregation

9

Disaggregated Memory Node

24 April 2023 Copyright (c) 2021, Pankaj Mehra

Disaggregated Memory Nodes (DMNs)

• Memory deployment that avoids stranded resources

• Cost-effective expansion to petabyte scale memory pools

• Independent scaling of memory and compute capacity, BW

• CXL enables coherent accelerators near fabric memory

Pros

• New devices/APIs/protocols needed due to higher latency

Cons

24 April 2023 Copyright (c) 2021, Pankaj Mehra 10

10

SW Implications of Disaggregated Memory

Requirements

• Data at a Distance

• Accessed from >1 Servers

• Accessed from CPUs, GPUs, …

Optimizations

• Data Gravity, Function Shipping

• Minimize/eliminate Serialization

• Maps efficiently into existing CPU
Memory Management

• Maximize hardware data path

11

Principles

• Uniform APIs for Distributed and Disaggregated Memory

• Combine referential efficiency of DSM with code mobility of RPC

?

24 April 2023 Copyright (c) 2021, Pankaj Mehra

OS Evolution in response to CXL: No Perfect Answers

• Linux and the rest of the software ecosystem is co-evolving with CXL, esp. HMM

• Solutions need to span data and control planes, scale-up and scale-out

• Versus pmem, CXL has wider adoption and could see deeper investment in compilers and CPU-native

optimizations to complement device-side features

• Linux and the rest of the software ecosystem is co-evolving with CXL, esp. HMM

• Solutions need to span data and control planes, scale-up and scale-out

• Versus pmem, CXL has wider adoption and could see deeper investment in compilers and CPU-native

optimizations to complement device-side features

Data Plane Control Plane

LD-ST ISA

Intrinsics

Doorbells Q Pairs MailboxesRegisters

Compiler Optimization

LibrariesLibraries

Latency Data Rate Mesg Rate
PortabilityEncryption

llvm, Bindingsllvm, Bindings

Coherence Configuration
Scale Up

Parallelism

Scale Out

Distributed Systems Fabric Manager

mwait/clflush/fence

HMM

Reachability

Data PlacementData Placement

Mem Device ConfigMem Device Config

CapacityBW Erasure Coding

OS Mem MgtOS Mem Mgt

ECC RASIME

Access Control

Virtualization

In-Band Out of Band

DAX

dev-daxdev-dax

Io_uring

Elephance does for Memory

what S3 did for Storage

Elephance MemOS™ An Operating System for Disaggregated Memory Nodes

14

Disaggregated Memory Node

to manage this memory

runs here

Elephance Memory’s

Device-Side MemOS™

Global pointers allows subgraphs

to be created and manipulated

as memory objects

at xPUs and devices

APIs and Language Bindings on the Hosts

allow graph functions (such as convolve @N1)

to be defined and shipped to the device as

easily as operating on that graph data from far

memory locally .

Invariant Pointers for Disaggregated Memory
Invariant under N-S or E-W data movement, meaningful rendezvous with function shipped to device

• Translation context disaggregated from process,
moved into Memory Objects with 128b ids that
are themselves easily embedded inside pointers
that traverse very large address spaces

• Efficient representation and fast manipulation of
local pointers (intra-object) in 1s nanoseconds

• Scalable persistent representation and fast
manipulation of non-local pointers (linked data)
using a Foreign Object Table for indirection in
every object within 10s nanoseconds

15

24 April 2023 Copyright (c) 2021, Pankaj Mehra

MemOS under the hood

*Usenix ATC 2020 Best Presentation

https://www.usenix.org/conference/atc20/presentation/bittman

Memory as a Distributed Service
from Disaggregated Memory Nodes

16

Device-Side OS …

24 April 2023 Copyright (c) 2021, Pankaj Mehra

runs here

to manage this memory

runs here

to manage this memory

Far Memory as a Distributed Service
from Disaggregated Memory Node

17

Device-Side OS …

24 April 2023 Copyright (c) 2021, Pankaj Mehra

exposes memory objects

that hold application data

… and exposes the data linkages

within and between memory objects

… as pointers that are valid globally

These graphs can represent

both function and data

Memory Objects map efficiently into host CPU

caches and virtual memory maps allowing LD-

ST accesses to non-pointer data to use an all-

hardware data path (with or without

coherence)

Global Pointers resolved with low SW

overhead

Workloads: Recommenders, GraphDB, and ML
Healthcare, Retail and Banking build Enterprise Knowledge Graphs to power real-time context-mediated experiences

• EKG scales: 109 vertices • 1010

edges • 107 updates/d • 60s
CDC • 25K concurrent users •
100ms response

• As little as 0.1% gain in ML
model accuracy (e.g. CTR
prediction) materially adds to
corporate revenue

18

EKG: Enterprise Knowledge Graph. CTR: Clickthrough Rate. ESG: Env

Sustainability Governance. SCM: Supply Chain Mgmt. HLS: Health & Life

Science. FSI: Financial Services Industry. CDC: Changed Data Capture.

ISO standard GQL queries
36TB LDBC Benchmark

FPGA accelerated pointer chasing

Graph Storage and Processing Engines:
Data in memory for real-time experience and monitoring

Studio Dashbd Query

Graph + ML
flywheel

In-database ML
with large models

An illustrative interface for
Disaggregated Memory Nodes!

24 April 2023 Copyright (c) 2021, Pankaj Mehra

Modern Workloads

Richly linked data structures widely used in modern
applications, increasingly so

Chasing pointers is very inefficient in general-purpose
processors, even worse when memory is farther

Offloading pointer-chasing to near-memory processors
brings its own set of challenges such as limited
parallelism and virtual-to-physical translation

BranchyBranchyLoopyLoopy

In DOE mini-apps,

FP instructions comprise 9-28%
(mean 15.5%)

of all executed instructions

In DOE mini-apps,

FP instructions comprise 9-28%
(mean 15.5%)

of all executed instructions

When graph-structured functions work on graph data

Branch and control instructions
(mean: 9.5%)
Branch and control instructions
(mean: 9.5%)

integer instructions (mean 29.5%)
and memory instructions (45%)

majority of integer instructions are
used to calculate memory addresses

integer instructions (mean 29.5%)
and memory instructions (45%)

majority of integer instructions are
used to calculate memory addresses

FluxyFluxy

Prior DOE Research: What HPC programs really “do” is not floating-point, but memory

DOE: Caches, our primary architectural mechanism to reduce latency and improve effective bandwidth, are not well
utilized. Many (64b) words which are brought in to the L1 cache are never touched before the cacheline is evicted. In
three of the four applications, for every cacheline of eight words that is brought in to the L1, less than 5.6 words (mean)
were used before the line was evicted. Worse results when prefetching is on.

DOE: Caches, our primary architectural mechanism to reduce latency and improve effective bandwidth, are not well
utilized. Many (64b) words which are brought in to the L1 cache are never touched before the cacheline is evicted. In
three of the four applications, for every cacheline of eight words that is brought in to the L1, less than 5.6 words (mean)
were used before the line was evicted. Worse results when prefetching is on.

Fluxy is no friend of CPUs and GPUs

Prior DOE Research: Just as it is reasonable to say that HPC programs really “do” memory, it is also

reasonable to say that we do it somewhat poorly.

Pointer-Heavy Code Sections in Analytics Workload

Eat up cyclesEat up cycles Mess up cachesMess up caches Worth optimizingWorth optimizing

Such large-impact easy-to-offload operations represent an uncommon optimization opportunity

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf

Here is the pattern

GATHER COMPUTE SCATTER

Key challenges of offloading Fluxy to Devices:Key challenges of offloading Fluxy to Devices:
Computational Memory

as a Service

1. Working with Virtual Addresses
2. Executing offloaded operation across many devices
1. Working with Virtual Addresses
2. Executing offloaded operation across many devices

Computational Far Memory as a Service
from Disaggregated Memory Node

25

Device-Side OS …

24 April 2023 Copyright (c) 2021, Pankaj Mehra

allows subgraphs

to be created and manipulated

as memory objects

APIs and Language Bindings on the Hosts

allow graph functions (such as convolve @N1)

to be defined and shipped to the device as

easily as operating on that graph data from far

memory locally .

Global Memory References as a Service
from Disaggregated Memory Node

26

Device-Side OS …

24 April 2023 Copyright (c) 2021, Pankaj Mehra

allows subgraphs

to be created and manipulated

as memory objects

These pointers

can be passed

from host to host

to realize

efficient RPC

with passing of

function and data

by reference.

… and exposes the data linkages

within and between memory objects

… as pointers that are valid globally

MemOS enables Computational Memory

27

Rich Data Use Case Device-side Memory
Controller

Elephance MemOS™ Software

SQL/NoSQL Cores and Acceleration IPs Stats offload with debug/tracing;
Computation graphs

DLRMs, GraphDB, HPC On-device MMU Data graphs; pointer chasing;
Flexible resolvers

Shared Data Clustering .mem MH Data Coherence Low overhead global addressing;
Transactions

mServices and RPC .cache 1-writer coherence Pipelining; Serialization avoidance

All of this removes software friction from

caching, sharing, optimization, and communication

• Low overhead, low coordination global address space via invariant pointers

• Enables data sharing and removes serialization

• Increases data and compute placement flexibility

• Invariant pointers aid pushing view of data graph lower in the stack

• Allows more effective offloading of FLUXY application-level functions

• Improves infrastructure-level software’s ability to optimize and to query plan

• Case in point: Densification for GPUs

Offloading FLUXY: Local Convolution

28

CPU chases pointers,

Retrieves neighbor node,

Retrieves local property,

Calculates filter polynomial

DMN chases pointers,

Retrieves neighbor node,

Retrieves local property,

Calculates filter polynomial

Returns convolved values

Convolution in CNN

Many RTTs,
Low goodput,

Cache pollution,
NW flooding,

Rule of 3 penalty

Low latency,
High goodput,
Independent

scaling

24 April 2023 Copyright (c) 2021, Pankaj Mehra

MemOS offloads Cross-Device/Object Pointer Chasing

29

Rich Data Use Case Device-side Memory
Controller

Elephance MemOS™ Software

SQL/NoSQL Cores and Acceleration IPs Stats offload with debug/tracing;
Computation graphs

DLRMs, GraphDB, HPC On-device MMU Data graphs; pointer chasing;
Flexible resolvers

Shared Data Clustering .mem MH Data Coherence Low overhead global addressing;
Transactions

mServices and RPC .cache 1-writer coherence Pipelining; Serialization avoidance

Especially useful for neighborhood operations on graphs

that have been sharded for scale across compute nodes

such as search-accumulate, PageRank, convolutions
Phil Bernstein, Microsoft Research

Deep Ecosystem Engagement. High Initial Customer Interest

Addressing the 4-27B TAM market of memory in Data

Management servers with a win-win-win value proposition.

Facebook Payments Developer: “I would use it right now”

Nvidia VP of CUDA: “Your software will make GPUs more efficient”

Snowflake Co-founder: “We will use it when available in AWS”

HPC Community: Our first broad exposure here

Addressing the 4-27B TAM market of memory in Data

Management servers with a win-win-win value proposition.

Facebook Payments Developer: “I would use it right now”

Nvidia VP of CUDA: “Your software will make GPUs more efficient”

Snowflake Co-founder: “We will use it when available in AWS”

HPC Community: Our first broad exposure here

Multi-cloud Data Infrastructure ISV

CSPs, Server OEMs

DRAM fabs
(DIMM vendors)

Interface chip

Developers

End users

CXL 3 SoCs

CXL based

Disaggregated

Memory Nodes

Deployed DRAM

CapEx/OpEx savings

Memory aaS

23 Feb 2023 Copyright (c) 2023, Elephance Memory, Inc. 30

From Devices to Services

Exploiting Integration, HI Computational Memory. Memory as a Service

BITSBITS
Intelligent

Bits, CMS

Service &

SDN

Service &

SDN

Connected

Bits, RDMA

Connected

Bits, RDMA

Universal System Concepts

Universal Hardware Concepts
With the memory industry and hyperscalers:

- How much near-memory processing?

- Fixed function vs programmable esp. with VAs

- Data-path: More efficient promotion/demotion

- Control: Better use of finite MMU resources

- Low-overhead hotness tracking

Feature Summary: How Elephance enables Memory aaS

1. High Performance Flexible Remoteable Pointers

▪ Native 64b pointers

▪ Minimize swizzling overheads

▪ Valid everywhere in space and time

2. Easy to Flex Compute Up and Down

▪ New compute can just declare and use

▪ Minimize [de]serialization overheads

▪ No need to keep compute fired up

3. mServices point to data in DMN, not copy it around

▪ Existing microservices benefit right away

▪ Minimize/Eliminate unnecessary copying,
resulting cache pollution, BW abuse

▪ Minimize [de]serialization overheads

1. High Performance Flexible Remoteable Pointers

▪ Native 64b pointers

▪ Minimize swizzling overheads

▪ Valid everywhere in space and time

2. Easy to Flex Compute Up and Down

▪ New compute can just declare and use

▪ Minimize [de]serialization overheads

▪ No need to keep compute fired up

3. mServices point to data in DMN, not copy it around

▪ Existing microservices benefit right away

▪ Minimize/Eliminate unnecessary copying,
resulting cache pollution, BW abuse

▪ Minimize [de]serialization overheads

Thank You
pankaj.mehra@ElephanceMemory.com

“Virtual Memory is one of the pillars of the computing revolution. Its
benefits include hardware flexibility, software portability, and overall
better security. Many of its fundamental abstractions and implementation
approaches are being augmented, extended, or entirely rebuilt in order to
ensure that virtual memory remains viable and performant in the years to
come.” [1]

Elephance Memory’s new MemOS operating system takes the idea of
virtual memory to its logical conclusion and makes possible Memory as a
Service, unleashing powerful new benefits such as Global Pointers,
Independent Scaling of Memory and Compute, RPC by Reference, and
Near-Memory Processing.

MemOS does all this while operating at the speed of hardware where
memory access/coherence protocols and safe execution are concerned.

[1] Paraphrased from Architectural and Operating System Support for Virtual Memory by Bhattacharjee and Lustig, 2018

	Slide 1: Memory-Centric System Architecture
	Slide 2: Memory is the last remaining wild cat in the otherwise orderly world of data centers
	Slide 3: The pain that is Data Center Server DRAM
	Slide 4: Cloud Markup on DRAM CapEx
	Slide 5: DDR: Current Practice in Memory Attach RDMA: Current Practice in Remote Memory Access
	Slide 6: Devices have a “Mother, may I?” relationship with the OS and will not disaggregate well.
	Slide 7: Current Practice: Memory as a Device
	Slide 8: CXL 1: Memory Capacity Expansion over PCIe
	Slide 9: CXL 3 enables pooling & disaggregation
	Slide 10: Disaggregated Memory Nodes (DMNs)
	Slide 11: SW Implications of Disaggregated Memory
	Slide 12: OS Evolution in response to CXL: No Perfect Answers
	Slide 13
	Slide 14: Elephance MemOS™ An Operating System for Disaggregated Memory Nodes
	Slide 15: Invariant Pointers for Disaggregated Memory Invariant under N-S or E-W data movement, meaningful rendezvous with function shipped to device
	Slide 16: Memory as a Distributed Service from Disaggregated Memory Nodes
	Slide 17: Far Memory as a Distributed Service from Disaggregated Memory Node
	Slide 18: Workloads: Recommenders, GraphDB, and ML Healthcare, Retail and Banking build Enterprise Knowledge Graphs to power real-time context-mediated experiences
	Slide 19: Modern Workloads
	Slide 20: When graph-structured functions work on graph data
	Slide 21: Fluxy is no friend of CPUs and GPUs
	Slide 22: Pointer-Heavy Code Sections in Analytics Workload
	Slide 23: Here is the pattern
	Slide 24: Key challenges of offloading Fluxy to Devices:
	Slide 25: Computational Far Memory as a Service from Disaggregated Memory Node
	Slide 26: Global Memory References as a Service from Disaggregated Memory Node
	Slide 27: MemOS enables Computational Memory
	Slide 28: Offloading FLUXY: Local Convolution
	Slide 29: MemOS offloads Cross-Device/Object Pointer Chasing
	Slide 30: Deep Ecosystem Engagement. High Initial Customer Interest
	Slide 31: From Devices to Services
	Slide 32: Feature Summary: How Elephance enables Memory aaS
	Slide 33
	Slide 34
	Slide 35

