
Identifying Performance Bottlenecks in Scientific
Applications with Call Path Querying

Ian Lumsden, Jakob Luettgau, Vanessa Lama, Connor Scully-Allison,
Stephanie Brink, Katherine E. Isaacs, Olga Pearce, Michela Taufer

Performance
Measurement
Tool (Profiler)

HPC
Application

Visualization
and Analysis

✓ Can use ✗
Cannot

usemain

funcA funcB

funcC funcD

Call Graph

Metrics
Name: funcA
Time: 95 µs

L2 Cache Misses: 7

Performance
Data Files

The Challenges of Analyzing Ensembles of Performance Data

Leveraging the Power of Call Path Querying for Performance Analysis

Enabling Analysis of Performance Data Ensembles

Studying MPI Performance with Call Path Querying

Lesson Learned and Future Directions

Collecting performance data

Augmenting metrics with call paths

Unifying performance data

Extracting knowledge from data

Queries

Query Node: funcD

Query Node: funcA

Query Node: main

Quantifier: how many
nodes in a call path to
match to a query node

Predicate: what conditions
must be satisfied for a node
to match a query node

main

funcA funcB

funcC funcD

query = [
 (“.”, {
 “name”: “MPI_.*”,
 “PAPI_L2_TCM”: “> 5”
 }),
 “*”
]

Object-based Dialect
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*"
AND p."PAPI_L2_TCM" > 5
"""

String-based Dialect
query = QueryMatcher().match(
 “.”,
 lambda row: re.match(
 “MPI_.*”,
 row[“name”])
 is not None
 and row[“PAPI_L2_TCM”] > 5
).rel(“*”)

Base Syntax

+ Support any query
- Require Python libs knowledge
- Work with Python only

+ Use built-in Python objects
- Support limited queries
- Work with Python only

+ Work with any language
- Support limited queries

 Query Example: Find all subgraphs rooted at a MPI node with more than 5 L2 cache misses

Node Profile
ID

Time L2 Cache
Misses

main
1 50 µs 3

2 47 µs 2

funcA
1 95 µs 7

2 102 µs 9

…

Profile
ID

Problem
Size

Compiler

1 1200 clang

2 1200 gcc

…

Node Time (avg)

main 48.5 µs

funcA 98.5 µs

…

Number of MPI Ranks

Pe
rc

en
t

M
PI

 T
im

e

Without Query Language

Number of MPI Ranks

Pe
rc

en
t

M
PI

_A
llg

at
h

er
 T

im
e

With Query Language

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining Time*

pthread_spin_lock.c:26 memset.S:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining Time*

* “Remaining Time” categories = functions that take up less than 5% of the total time considered

M = MVAPICH S = Spectrum-MPI

● HPC applications get larger and more complex
● Performance analysis plays a critical role in

understanding bottlenecks on HPC systems
● Challenges:

○ Performance analysis is limited by the
design of profilers and analysis tools

○ Scientists need a more effective way to
manage and analyze data from multi-run
performance experiments

● We design and implement a new Call
Path Query Language in Hatchet and
Thicket
○ The language extracts paths in the

call graph using queries (i.e.,
descriptions of the properties of one
or more paths in the graph)

● We define two
dialects for the
Query Language to
simplify its use
under certain
circumstances
○ Object-based
○ String-based

● Each dialect comes
with its own
strengths and
weaknesses

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory (LLNL) under Contract DE-AC52-07NA27344 (LLNL-POST-847739).
The UTK group acknowledges the support of NSF (#1841758, #1900888, and #2138811).
The authors thank Dr. Abhinav Bhatele (University of Maryland), Dr. Todd Gamblin (LLNL), and Sanjukta
Bhowmick (University of Northern Texas) for their feedback during the preparation of this work.

● Thicket builds on Hatchet to
enable data analysis for
multi-run performance
experiments (ensembles)

● Thicket enables scientists to:
○ Merge multi-run data into a

single performance view
○ Analyze data easily with

built-in functionality and
other Python tools

Performance data

Aggregate Statistics

Call Graph Metadata

● Thicket components are:
○ Call graph
○ Performance data
○ Metadata
○ Aggregate statistics

main

funcA funcB

funcC funcD

● We run the AMG2013 benchmark
with different MPI libraries and at
varying scales
○ MVAPICH and Spectrum-MPI

● We use LLNL’s Lassen (POWER9
CPU)

● We profile the runs with HPCToolkit
● Our solution allows us to look at the

performance of the internals of a
specific MPI call to discover
potential causes of Spectrum-MPI’s
worse performance

● Our Query Language allows scientists to discover new insights into their applications’ performance
○ We discover that Spectrum-MPI spends a higher percentage of its MPI_Allgather time in

pthread_spin_lock (roughly 30%) than MVAPICH (roughly 20%), which could explain
Spectrum-MPI’s worse performance

● Future work: Deploy Thicket, augmented with our Query Language, to study the performance of in
situ workflows (e.g., workflows for studying protein structure changes)

If you want to
learn more
about the
Query
Language,
check out our
eScience 2022
paper:

