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to match a query node
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query = [
    (“.”, {
     “name”: “MPI_.*”,
     “PAPI_L2_TCM”: “> 5”
    }),
    “*”
]

Object-based Dialect
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*"
AND p."PAPI_L2_TCM" > 5
"""

String-based Dialect
query = QueryMatcher().match(
     “.”,
     lambda row: re.match(
         “MPI_.*”,
         row[“name”] )
     is not None
     and row[“PAPI_L2_TCM”] > 5
  ).rel(“*”)

Base Syntax

+ Support any query
- Require Python libs knowledge
- Work with Python only

+ Use built-in Python objects
- Support limited queries
- Work with Python only 

+ Work with any language
- Support limited queries

 Query Example: Find all subgraphs rooted at a MPI node with more than 5 L2 cache misses

Node Profile 
ID

Time L2 Cache 
Misses

main
1 50 µs 3

2 47 µs 2

funcA
1 95 µs 7

2 102 µs 9

…
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ID

Problem 
Size

Compiler

1 1200 clang

2 1200 gcc

…

Node Time (avg)

main 48.5 µs

funcA 98.5 µs

…
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With Query Language

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining Time*

pthread_spin_lock.c:26 memset.S:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining Time*

* “Remaining Time” categories = functions that take up less than 5% of the total time considered

M = MVAPICH S = Spectrum-MPI

● HPC applications get larger and more complex
● Performance analysis plays a critical role in 

understanding bottlenecks on HPC systems
● Challenges:

○ Performance analysis is limited by the 
design of profilers and analysis tools

○ Scientists need a more effective way to 
manage and analyze data from multi-run 
performance experiments

● We design and implement a new Call 
Path Query Language in Hatchet and 
Thicket
○ The language extracts paths in the 

call graph using queries (i.e., 
descriptions of the properties of one 
or more paths in the graph)

● We define two 
dialects for the 
Query Language to 
simplify its use 
under certain 
circumstances
○ Object-based
○ String-based

● Each dialect comes 
with its own 
strengths and 
weaknesses 
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● Thicket builds on Hatchet to 
enable data analysis for 
multi-run performance 
experiments (ensembles)

● Thicket enables scientists to:
○ Merge multi-run data into a 

single performance view
○ Analyze data easily with 

built-in functionality and 
other Python tools

Performance data

Aggregate Statistics

Call Graph Metadata

● Thicket components are:
○ Call graph
○ Performance data
○ Metadata
○ Aggregate statistics
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● We run the AMG2013 benchmark 
with different MPI libraries and at 
varying scales
○ MVAPICH and Spectrum-MPI

● We use LLNL’s Lassen (POWER9 
CPU)

● We profile the runs with HPCToolkit
● Our solution allows us to look at the 

performance of the internals of a 
specific MPI call to discover 
potential causes of Spectrum-MPI’s 
worse performance

● Our Query Language allows scientists to discover new insights into their applications’ performance
○ We discover that Spectrum-MPI spends a higher percentage of its MPI_Allgather time in 

pthread_spin_lock (roughly 30%) than MVAPICH (roughly 20%), which could explain 
Spectrum-MPI’s worse performance

● Future work: Deploy Thicket, augmented with our Query Language, to study the performance of in 
situ workflows (e.g., workflows for studying protein structure changes)

If you want to 
learn more 
about the 
Query 
Language, 
check out our 
eScience 2022 
paper:


