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Big Consequences of Little’s Law



• Theorem in queuing theory for a system providing a service
average number of concurrent service requests =

arrival rate of requests * time to service each request
• Expressed as 

L (# of requests) = λ (arrival rate) * W (wait time)

• Simple example
• Can make 1 widget in 1 minute
• Want to provide customers 6 widgets per minute
• Strategies:

– 6 separate widget makers
– One 6-step production line with 10 seconds per step (after priming)
– Etc.

“A proof for the queuing formula: L = λW”, Little, J. D. C., Operations Research 9(3) 383–387, 1961

What is Little’s Law?
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• Can be applied in many places that have bandwidth and latency constraints
• Cache systems
• Memory systems
• Networks

Concurrency = Bandwidth * Latency

• Next slides show plots of Little’s Law applied to memory systems and networks

Given a) a design bandwidth ceiling for a memory or network and b) a latency to access that media
How much concurrency is required?

• Assume no bottlenecks elsewhere in system (not trivial)
• Latency measured from point of reference issue in processor

Little’s Law in Computer Design



• Not much of an issue except in 
very high-end systems
• Fully synchronous throughout

• Cray 1 – vectors and memory 
system pipelining provide 
required concurrency

Little’s Law Before 1990
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Little’s Law Early 1990s
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• Single word bandwidth*latency 
product starts going up

• Cache architectures become common
• Intended to address disparity between 

CPU clock speeds and memory speeds
• Little’s Law still mostly met due to 

increased access size (cacheline)
• Assumes good spatial locality (extra 

benefit for temporal locality)
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• Great when locality keeps miss rate low
• When miss rates get high, memory system becomes the bottleneck

• Lack of temporal locality – data not reused before eviction (memory bandwidth used once)
• Lack of spatial locality – only part of cache line used (throws away memory bandwidth)

• Both are algorithm dependent
• Spatial locality can be sometimes be improved with packing/gathers

• Certain algorithms are “degenerate”, especially ”pointer chasing” (often part of graph algorithms)
• The next word reference depends on full completion of the previous reference
• Little or no cache locality (neither temporal nor spatial)
• Clever coding can implement more than one “chasing stream” in a single thread on some architectures

– Increases concurrency within a thread at the expense of increased register pressure

• CPU <-> memory connection not as wide as a cache line
• Buffering and pipelining required resulting in increased memory system complexity

Challenges with Caches



• Also in the 90s, MTA was designed based 
on Little’s Law with a distributed uniform 
memory (UMA)
• Latency tolerance using concurrency

• 128 HW threads, each with up to 8 
outstanding memory references (typically 
2-3), no data caches
• Optimized for word accesses

• In 2000s XMT had > 3x latency, 
concurrency no longer always enough, 
locality became important again (NUMA)

Tera MTA/Cray XMT
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• With word references, a lot of 
concurrency is required

• Caches bring this down (typically by 
a factor of 8) but still challenging 
even with many-core CPUs
• More concurrency is required

Modern DDR
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• 25x bandwidth at slightly 
higher latency

• Where is all the concurrency 
going to come from?

Challenge of HBM
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Hyperthreads

Best for pointer 
chasing?

Vectors (again)

Dense

“Gather” style vector 
references for sparse

GPUs/SIMT

Generate many 
latency tolerant 
memory references

Software

Reference density 

Additional levels of 
parallelism

Modern Concurrency Sources



11

Modern Concurrency Challenges

• Scatter/gather add complexity
• Significant “in-process” state to store and track

• E.g., 0.5 MB of state for HBM3 at every level
• Low cache hit rates sometimes not properly provisioned with sufficient request concurrency to next level

Every level of the memory system, from load/store units, through all cache levels, across on-chip 
network, and at the memory controller must support sufficient concurrency

• Naïve schemes subject to stride access conflicts

Multi-channel/stack memory systems require good distribution strategies

• Long vectors not always effective
• GPUs still struggle with some algorithms

Significant algorithm dependence on generating many forms of concurrency
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Other Strategies to Address Consequences 

Prefetch  
(CPU or cache driven)

• More of a latency reduction 
technique (when successful)

• Can be a source of additional 
concurrency

Speculation

• Takes prefetching further into 
“possible” computational 
paths

• Far more likely to “waste” 
bandwidth than simple 
prefetch

PIM and other techniques 
bringing memories closer 

to processors

• Reduced latency, reduces 
concurrency requirements



• Network bound applications 
and communication phases 
face similar issues
• Sparse matrix, pointer chasing, 

boundary exchanges

• HPC networks have similar 
bandwidth but typically lower 
latencies than standard ones

Modern Networks
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Everything Will Be Disaggregated! Myth 8

All HPC Will Be Subsumed by the Clouds! Myth 12

Extreme Specialization as Seen in Smartphones Will Push 
Supercomputers Beyond Moore’s Law!

Myth 3

Little’s Law Consequences
Myth Busters (and Related Challenges)
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“Myths and Legends in High-Performance Computing”, Satoshi Matsuoka, Jens Domke, Mohamed Wahib, Aleksandr Drozd, Torsten Hoefler, 
arXiv:2301.02432v1 [cs.DC] 6 Jan 2023 



• Disaggregation adds latency
• Comm/collective latency most important for “bulk-synchronous programming” (BSP)
• Also increases concurrency requirements (close to 1000 for HPC networks)

• Pipelining also required to achieve bandwidth
• Complicated buffering
• Optics not amenable to buffering
• Optical/electrical domain changes add yet more latency and complexity

• OK with disaggregation?
• Large distributed, in-memory data structures
• Loosely coupled applications and workloads

“Myths and Legends in High-Performance Computing”, Satoshi Matsuoka, Jens Domke, Mohamed Wahib, Aleksandr Drozd, Torsten Hoefler, arXiv:2301.02432v1 [cs.DC] 6 Jan 2023 

Everything Will Be Disaggregated! 
Myth Busters – Myth 8
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• “Cloud” can mean many different things
• Public vs private, access methodologies
• Focus here on network type and data movement

• True HPC systems hosted in the cloud can provide the same functionality as on-premise
• Business issues dominate in that case 

– E.g., public cloud vs. hosted private cloud, data storage/staging, elasticity, shared vs private resources
• Not clear how common or cost-effective true HPC systems will ever be in public cloud

• Without low-latency HPC network, many applications are adversely affected
• BSP suffers (see Myth 8)
• Additional concurrency needed in communication for Little’s Law
• Will public cloud providers be sufficiently motivated to provide suitable systems and networks?

• Some applications are amendable to cloud, but data transfer/sharing still at issue

“Myths and Legends in High-Performance Computing”, Satoshi Matsuoka, Jens Domke, Mohamed Wahib, Aleksandr Drozd, Torsten Hoefler, arXiv:2301.02432v1 [cs.DC] 6 Jan 2023 

All HPC Will Be Subsumed by the Clouds! 
Myth Busters – Myth 12



• Asynchronous task-based programming likely necessary to address scheduling/load balancing efficiently
• Also has the possibility of exposing additional degrees/levels of concurrency

• While such frameworks exist in HPC, they haven’t caught on widely
• Charm++, Legion, ParalleX/HPX, Chapel, OpenMP tasking, etc.

• Reasoning about this style of programming is harder than BSP

• However, heterogeneity is becoming a fact of life for some codes and workflows
• Multi-physics, cogsim (coupled AI and simulation), etc.

• New specialized hardware is gaining traction

• Is increased concurrency another motivation to adopt such frameworks?  Is it feasible?
• Requires moving away from BSP and adopting other decomposition techniques
• Weak vs Strong scaling issues
• How wide can the task graphs be?

• Fantasy?  Move from “time-based” to “event-based” simulation
“Myths and Legends in High-Performance Computing”, Satoshi Matsuoka, Jens Domke, Mohamed Wahib, Aleksandr Drozd, Torsten Hoefler, arXiv:2301.02432v1 [cs.DC] 6 Jan 2023 

Extreme Specialization as Seen in Smartphones Will Push Supercomputers Beyond Moore’s Law!
Myth Busters – Myth 3
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• Little’s Law is very relevant to computer design, both hardware and software

• Memory systems, cache hierarchies, and network interfaces must support sufficient concurrency
• Requires complex buffering and pipelining

• Processor hardware must generate sufficient concurrency

• Some new hardware designs directly address Little’s Law 
• Better vector units supporting effective long/sparse vectors (and other scatter/gather techniques)
• Increased NUMA to reduce latency with sufficient bandwidth and concurrency

• But some seem to ignore it (insufficient concurrency)

• Algorithms must drive processor hardware sufficiently
• Pointer chasing still difficult
• Continuing improvements for other “sparse” reference patterns
• Expose concurrency at multiple levels

Conclusion
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