
Porting the Kitten Lightweight Kernel Operating System to RISC-V
Nick Gordon 1,2, Kevin Pedretti2, John R. Lange3

nick.gordon@cs.pitt.edu, ktpedre@sandia.gov, langejr@ornl.gov
1University of Pittsburgh, 2Sandia National Laboratories, 3Oak Ridge National Laboratories

Introduction

Hardware design in HPC is highly experimental and exploring new designs is difficult and

time-consuming, requiring close vendor cooperation. RISC-V is an open standard processor

ISA that we can use for hardware/software codesign:

RISC-V democratizes chip/hardware design by being open

Open ISAs ease hardware/software co-design by shortening the design cycle

Shortened design cycles reduce cost and time by trying ideas sooner

This work aims to leverage RISC-V for hardware/software co-design by developing a suitable

OS with which to conduct co-design.

Co-Design and the “Design Barrier”

Co-design is hindered by the uncoupled development cycles of hardware and software. Conventionally, design

is done hardware first and software accommodates. Software design creates feedback, too, e.g. hardware

virtualization.

We call this separation the “design barrier,” allowing each to evolve independently. This is suitable for com-

mercial/production, but not ideal for research.

To do effective co-design we need open, extensible hardware and open, extensible software.

Operating System

Hardware

Design Barrier

Design 
iteration

Integrate new 
design

Design 
iteration

Integrate new 
design

Operating System

Hardware

Figure 1. Co-design allows design decisions to flow across the “design barrier.”

RISC-V

RISC-V is an open-standard hardware ISA developed by Berkeley, with an active community of researchers and

contributors. First released in 2010, it has quickly gained traction for hardware research due to its openness

and simplicity.

The ecosystem is now quite mature, with compiler toolchains, hardware simulators, and hardware design lan-

guages (HDLs).

Lightweight Kernels (vs Linux)

In HPC and elsewhere, Linux is now the dominant OS. This provides portability advantages, but creates massive

design inertia. Using Linux for co-design requires many and potentially extensive modifications, which is non-

trivial.

Lightweight kernels (LWKs) are an OS design approach that emphasizes simplicity and performance with mod-

ern design and minimum hardware abstraction, making them ideal as a co-design platform.

Methodology

We ported the Kitten to RISC-V, on both the SiFive Unmatched, an early development single-board computer, and the hardware emulator QEMU.

Kitten is a well-known lightweight kernel used in HPC applications, providing simplified resource allocation, simple kernel design, and a Linux-compatible ABI.

Performance Results

To evaluate the feasibility of our port we compared performance to Linux, which has existing support for RISC-V.

We evaluated performance using three well-known, benchmarks which highlight memory performance. Our benchmarks ran on a single core, as multicore support was not

finished.

HPCG – Conjugate gradient benchmark that is part of the Top500 benchmark suite

RandomAccess – Random access benchmark measuring memory updates per second

STREAM – Sustained memory bandwidth benchmark

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

QEMU Unmatched

M
U

P
/s

RandomAccess (GUPS)

Linux
Kitten

(a) RandomAccess Performance

 40

 50

 60

 70

 80

 90

 100

QEMU Unmatched

M
F

L
O

P
/s

Platform

Linux
Kitten

HPCG Performance

(b) HPCG performance across several systems.

Result variance was 2% or less in all tests.

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

QEMU Unmatched

M
B

/s

STREAM Add

Linux
Kitten

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

QEMU Unmatched

M
B

/s

STREAM Copy

Linux
Kitten

 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750

QEMU Unmatched

M
B

/s

STREAM Scale

Linux
Kitten

 300

 400

 500

 600

 700

 800

 900

QEMU Unmatched

M
B

/s

STREAM Triad

Linux
Kitten

Figure 3. STREAM Benchmark Results

Conclusion

Our experiments show that LWKs can provide a simplified, extensible platform for co-design that has performance parity and even slight advantages compared to Linux, while

retaining Linux ABI compatibility.

References

[1] Jack Dongarra, Michael A. Heroux, and Piotr Luszczek. HPCG Benchmark: a New Metric for Ranking High Performance Computing Systems. Technical Report ut-eecs-15-736, November 2015.

[2] Argonne National Laboratories. Argonne national laboratories benchmarks repo.

[3] John D. McCalpin. Memory Bandwidth and Machine Balance in Current High Performance Computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, pages 19–25, December 1995.

[4] Kevin Pedretti. Kitten: A Lightweight Operating System for Ultrascale Supercomputers. Sandia Lab, 2011.


