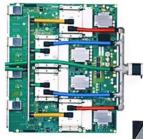

An Overview of High Performance Computing and Future Requirements

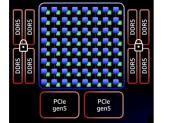
Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester

A Changing World

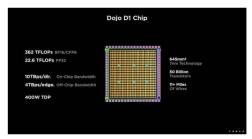
- Computing pervades all aspects of society
 - Socialization and communication
 - E-commerce and business
 - Research and development
- Apple, Samsung, and Google
 - Dominate the world of smartphones
 - Design their own silicon
- Google, Microsoft, Amazon, Apple
 - Dominate the NASDAQ (market cap > \$1T each)
 - Baidu, Alibaba, and TenCent are not far behind
 - Also designing their own silicon



Cloud vendors


- Alibaba
 - CIPU, 128 core ARM based
 - Alibaba's Elastic Compute Service

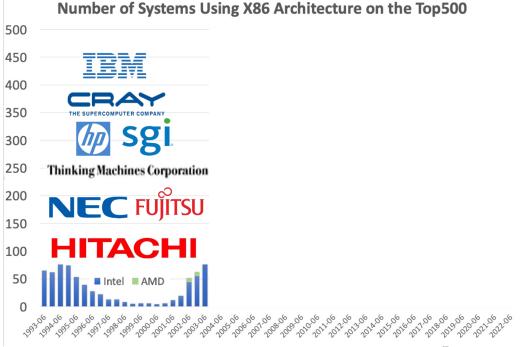
- AWS Graviton3
 - 64 ARM Neoverse V1 cores, chiplet design
 - 55 billion transistors, DDR5 memory
- Google TPU4
 - 2X TPU3 performance
 - 4096 units per "pod"
 - Reconfigurable optical interconnect



- Microsoft Azure
 - Ampere Alta ARM processors
 - Project Catapult/Brainewave

Even car makers

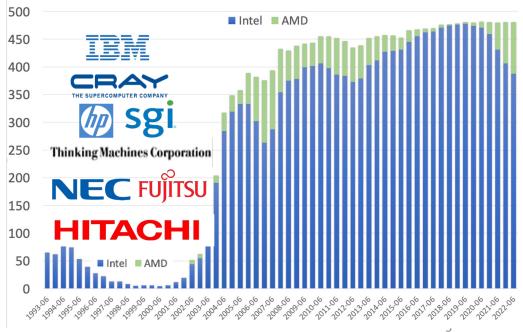
Tesla •



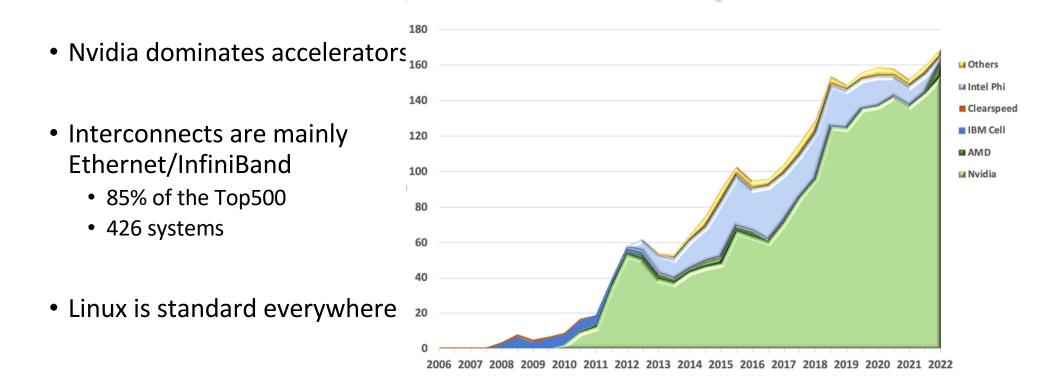
TPU^{V4}

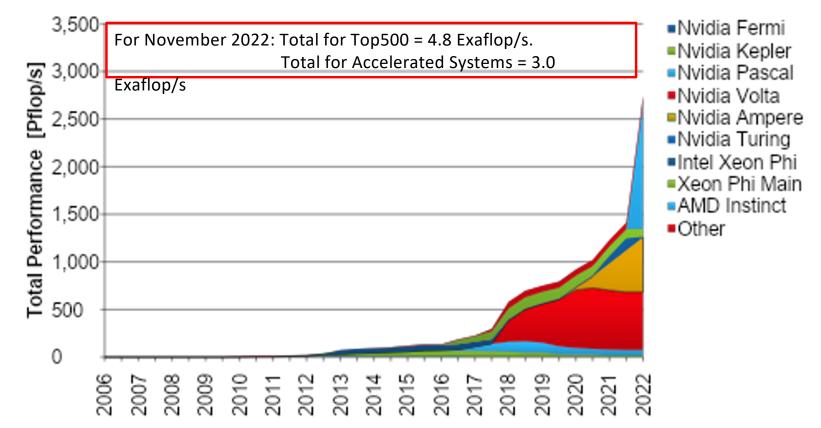
High Performance Computing is a Monoculture – Processors

- TOP500 list began in 1993
 - 65 systems used Intel's i860 architecture
 - Remainder had specialized architectures, mainly vector based



High Performance Computing is a Monoculture – Processors


- TOP500 list began in 1993
 - 65 systems used Intel's i860 architecture
 - Remainder had specialized architectures, mainly vector based
- Today's TOP500 list
 - 78% of systems used Intel processors
 - Another 19% used AMD processors
- 97% of the systems use x86-64 architecture
 - Many use GPU accelerators


Number of Systems Using X86 Architecture on the Top500

HPC Monoculture – Accelerators/Interconnects/OS

62% of Top500 Performance on Accelerators

DOE: Exascale investing > \$4 B in total, over 7 years

What do you get for \$4 B?

- 3 computers
 - \$600M each

21 Applications

AMD Based

• A bunch of software (84 projects)

Intel Based

				PMR Core (17)	Compilers and Support (7)	Tools and Technology (11)	xSDK (16)	Visualization Analysis and Reduction (9)	Data mgmt, I/O Services, Checkpoint restart (12)	Ecosystem/E4S at-large (12)
Domain*	Base Challenge Problem	Domain*	Challenge Problem	QUO	openarc	TAU	hypre	ParaView	SCR	mpiFileUtils
		Quantum Materials	Predict & control matls @ quantum level	Papyrus	Kitsune	HPCToolkit	FleSCI	Catalyst	FAODEL	TriBITS
Wind Energy	2x2 5 MW turbine array in 3x3x1 km ³ domain			SICM	LLVM	Dyninst Binary Tools	MFEM	VTK-m	ROMIO	MarFS
Nuclear Energy	Small Modular Reactor with complete in-	Astrophysics	Supernovae explosions, neutron star mergers	Legion	CHiLL autotuning comp	Gotcha	Kokkoskernels	SZ	Mercury (Mochi suite)	GUFI
Nuclear Energy	vessel coolant loop		Extract "dark sector" physics from upcoming	Kokkos (support)	LLVM openMP comp	Caliper	Trilinos	zfp	HDF5	Intel GEOPM
Fossil Energy	Burn fossil fuels cleanly with CLRs		cosmological surveys	RAJA	OpenMP V & V	PAPI	SUNDIALS	Vislt	Parallel netCDF	BEE
		Earthquakes	Regional hazard and risk assessment	CHAI	Flang/LLVM Fortran comp	Program Database Toolkit	PETSc/TAO	ASCENT	ADIOS	FSEFI
Combustion	Reactivity controlled compression ignition	Geoscience		PaRSEC*		Search (random forests)	libEnsemble	Cinema	Darshan	Kitten Lightweight Kernel
Accelerator Design	TeV-class 10 ²⁻³ times cheaper & smaller	Costience	cement due to attack of CO2-saturated fluid	DARMA		Siboka	STRUMPACK	ROVER	UnifyCR	COOLR
Magnetic Fusion	Coupled gyrokinetics for ITER in H-mode	Earth System	Assess regional impacts of climate change on the	GASNet-EX	1	C2C	SuperLU		VeloC	NRM
Magnetic Pusion	Coupled gyrokinetics for there in the inde		water cycle @ 5 SYPD	Qthreads		Sonar	ForTrilinos		IOSS	ArgoContainers
Nuclear Physics: QCD	Use correct light quark masses for first principles light nuclei properties	Power Grid	Large-scale planning under uncertainty; underfrequency response	BOLT			SLATE		HXHIM	Spack
				UPC++			MAGMA	PMR		
Chemistry: GAMESS	Heterogeneous catalysis: MSN reactions	Cancer Research	Scalable machine learning for predictive preclinical models and targeted therapy	MPICH			DTK	Tools		
Chemistry: NWChemEx	Catalytic conversion of biomass		· · · ·	Open MPI			Tasmanian	Math Lib	Legend	
Extreme Materials	Microstructure evolution in nuclear matts	Metagenomics	Discover and characterize microbial communities through genomic and proteomic analysis	Umpire			Ginkgo	Data and Ecosyste	I Vis	
Additive Manufacturing	Born-qualified 3D printed metal alloys	FEL Light Source	Protein and molecular structure determination using streaming light source data							

1000 people working on ECP, and the project will end in 8 months. There is no follow-on project at this scale!!

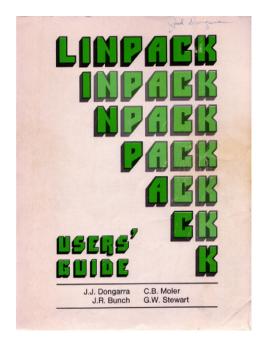
Today's HPC Environment for Scientific Computing

- Highly parallel
 - Distributed memory
 - MPI + Open-MP programming model
- Heterogeneous
 - Commodity processors + GPU accelerators
- Communication between parts very expensive compared to floating point ops
- Floating point hardware at 64, 32, 16, & 8 bit levels

Туре	Size	Range	$u = 2^{-t}$
half	16 bits	10 ^{±5}	$2^{-11}\approx 4.9\times 10^{-4}$
single double	32 bits 64 bits	10 ^{±38} 10 ^{±308}	$\begin{array}{l} 2^{-24}\approx 6.0\times 10^{-8} \\ 2^{-53}\approx 1.1\times 10^{-16} \end{array}$
quadruple	128 bits	$10^{\pm 4932}$	$2^{-113}\approx9.6\times10^{-35}$

The Fastest Supercomputers are at an Exaflop. What's an Exaflop?

- 1 flop = Addition or Multiplication of 64-bit floating point numbers
- Exaflop is a billion-billion (10¹⁸) floating point operations per second
- If each person on Earth completed 1 calculation per second, it would take more than 4 years to do what an Exascale computer can do in 1 second.

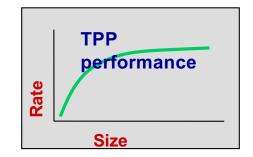

An Accidental Benchmarker

LINPACK was an NSF Project w/ ANL, UNM, UM, & UCSD We worked independently and came to Argonne in the summers

Top 23 List from 1977 Performance of solving *Ax=b* using LINPACK software

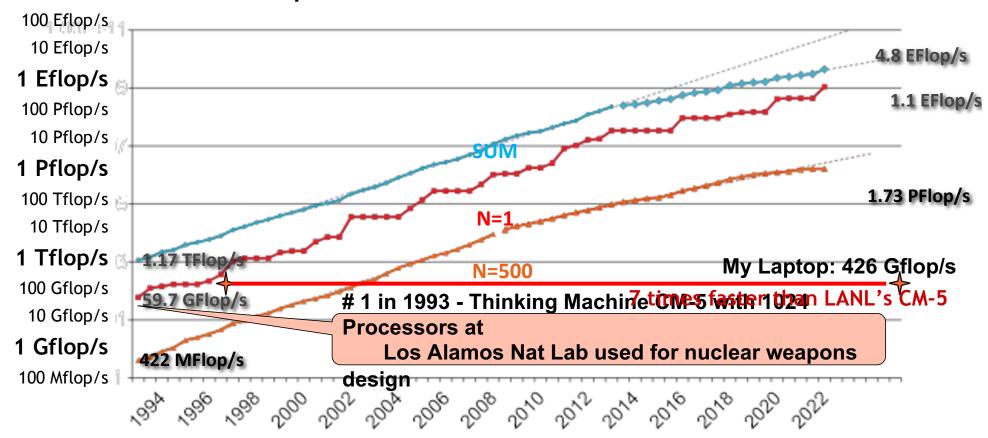
213.	UNIT = 1	L0**6 TI	ME/(1/	3 100**3 + 100*	**2)	
31	Facility	TIME N=100 secs.	UNIT micro- secs.	Computer	Туре	Compiler
				1.599.15		
	LASL 4,4 NCAR 3,5 LASL 5,2 Argonne 2,3 NCAR 1,9 Argonne 1,7 NASA Langley 4 U. 111. Urbana 1,4 SLAC 1,1 Michigan 1,6 Toronto 7 Northwestern 4 Texas 55 China Lake 35 China Lake 35 Schina Lake 35 Yale 24 Bell Labs 45	a. 489	$\begin{array}{c} 0.86\\ 1.05\\ 1.33\\ 1.42\\ 1.47\\ 1.61\\ 1.69\\ 1.84\\ 2.59\\ 4.20\\ 5.63\\ 5.69\\ 7.53\\ 10.1\\ 10.1 \end{array}$	CRAY-1 CDC 7600 CRAY-1 CDC 7600 IBM 370/195 CDC 7600 IBM 3033 CDC Cyber 175 CDC Cyber 175 CDC Cyber 175 CDC 7600 IBM 370/168 Amdah1 470/V6 IBM 370/165 CDC 6600 CDC 6600 Univac 1110 DEC KL-20 Honeywell 6080 Univac 1110 Itel AS/5 mod	S S S S S S S S S S S S S S S S S S S	CFT, Assembly BLAS FTN, Assembly BLAS CFT FTN H Local H FTN Ext. 4.6 CHAT, No optimize H Ext., Fast mult. H H Ext., Fast mult. FTN RUN V F20 Y V H
	U. III. Chicago	15 40	11.9	-IBM 370/158	D	Gl

Appendix B of the Linpack Users' Guide Designed to help users estimate the run time for solving systems of equation using the Linpack software.
First benchmark report from 1977; Cray 1 to DEC PDP-10



Top500 Since 1993

- Hans Meuer and Erich Strohmaier had a list of fastest computers ranked by peak performance.
- I had a list of benchmark results and we put the two lists together.
- Listing of the 500 most powerful computers in the World.
- Yardstick: Performance for Ax=b, dense problem


 Maintained and updated twice a year: SC'xy in the States in November Meeting in Germany in June

Performance Development of HPC over the Last 30 Years from the Top500

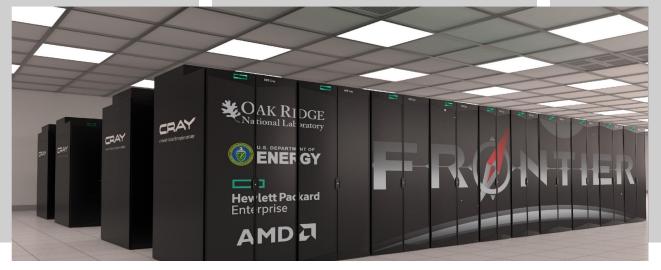
November 2022: The TOP 10 Systems (53% of the Total Performance of Top500)

Rank	Site	Computer	Country	Cores	Rmax [Pflops]	% of Peak	Power [MW]	GFlops/ Watt
1	DOE / OS Oak Ridge Nat Lab	Frontier, HPE Cray Ex235a, AMD 3 rd EPYC (64C, 2 GHz), AMD Instinct MI250X, Slingshot 11	USA	7,733,248	1,102	65	21.1	52,2
2	RIKEN Center for Computational Science	Fugaku, ARM A64FX (48C, 2.2 GHz), Tofu D Interconnect	Japan	7,299,072	442.	82	29.9	14.8
3	EuroHPC /CSC	LUMI, HPE Cray EX235a, AMD 3 rd EPYC (64C, 2 GHz), AMD Instinct MI250X, Slingshot 11	Finland	1,268,736	304.	72	2.94	52.3
4	EuroHPC/CINECA	BullSequana XH2000, Xeon Platinum 8358 (32C, 2.6GHz), NVIDIA A100 (108C), Quad-rail NVIDIA HDR100	Italy	1,463,616	175.	68	5.6	31.1
5	DOE / OS Oak Ridge Nat Lab	Summit, IBM Power 9 (22C, 3.0 GHz), NVIDIA GV100 (80C), Mellonox EDR	USA	2,397,824	<i>149.</i>	74	10.1	14.7
6	DOE / NNSA L Livermore Nat Lab	Sierra, IBM Power 9 (22C, 3.1 GHz), NVIDIA GV100 (80C), Mellonox EDR	USA	1,572,480	94.6	75	7.44	12.7
7	National Super Computer Center in Wuxi	Sunway TaihuLight, <mark>SW26010 (260C)</mark> , Custom Interconnect	China	10,649,000	93.0	74	15.4	6.05
8	DOE / OS NERSC - LBNL	Perlmutter HPE Cray EX235n, AMD EPYC (64C, 2.45GHz), NVIDIA A100, Slingshot 10	USA	706,304	64.6	71	2.59	27.4
9	NVIDIA Corporation	Selene NVIDIA DGX A100, AMD EPYC 7742 (64C, 2.25GHz), NVIDIA A100 (108C), Mellanox HDR	USA	555,520	63.4	80	2.64	23.9
10	National Super Computer Center in Guangzhou	Tianhe-2A NUDT, Xeon (12C), <mark>MATRIX-2000 (128C)</mark> + Custom Interconnect	China	4,981,760	61.4	61	18.5	3.32

CAK RIDGE

System Performance

- Peak performance of 2 Eflop/s for modeling & simulation
- Power: 20+ MW
- Peak performance of 11.2 Eflop/s for 16 bit floating point used in for data analytics, ML, and artificial intelligence


Current #1 System Overview

Each node has

- 1-AMD EPYC 7A53 CPU w/64 cores (2 Tflop/s)
 - < 1% performance of the system
- 4-AMD Instinct MI250X GPUs Each w/220 cores (4*53 Tflop/s) 99% performance of the system
- 730 GB of fast memory
- 2 TB of NVMe memory

The system includes

- 9408 nodes
 37,632 GPUs
 8.88M Cores
- Cray Slingshot interconnect
 - 4 end points per node
- 706 PB Memory
 - (695 PB Disk + 11 PB SSD)

Argonne Aurora

System Overview (Based on public data)

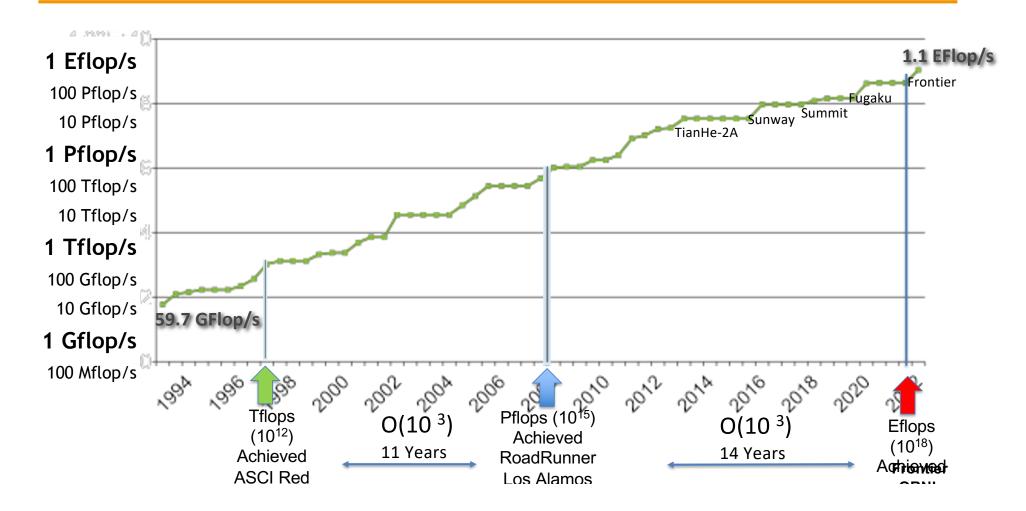
System Performance

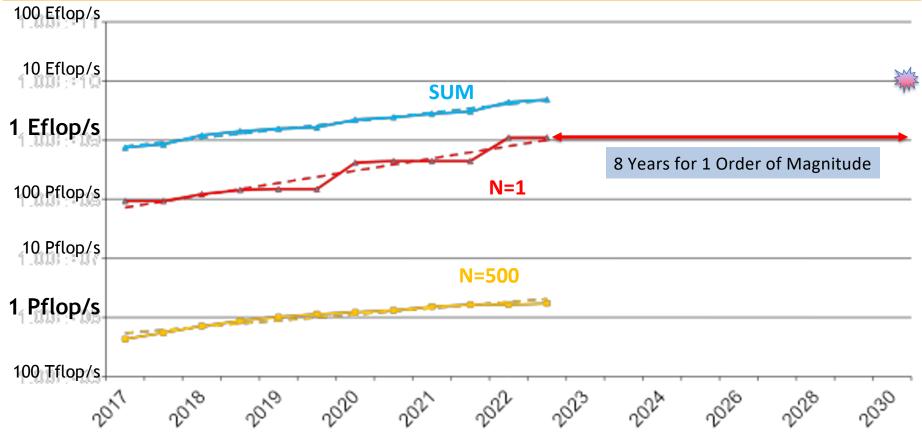
- Peak performance of 3.34
 Eflop/s for modeling & simulation @ 64 bit float pt
 - At 1.6 GHz (nominal, may be lower)
- Facility Power capacity 60 MW
- Peak performance of 53.5
 Eflop/s for 16 bit floating point used in for data analytics, ML, and artificial intelligence

Each node has

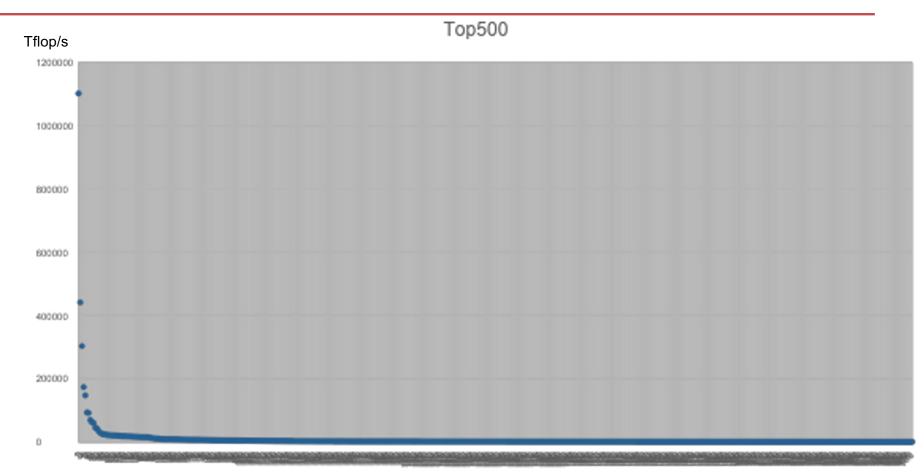
- 2 Intel Sapphire Rapids CPU processors; w/52 cores (5.3 Tflop/s)
 - < 2% performance of the system
- 6 Intel Xe Ponte Vecchio GPUs (6*52.4 Tflop/s = 314 Tflop/s) 98% performance of the system
- 896 GB of HBM memory; Plus 1.02 TB DDR5 on the CPUs

The system includes

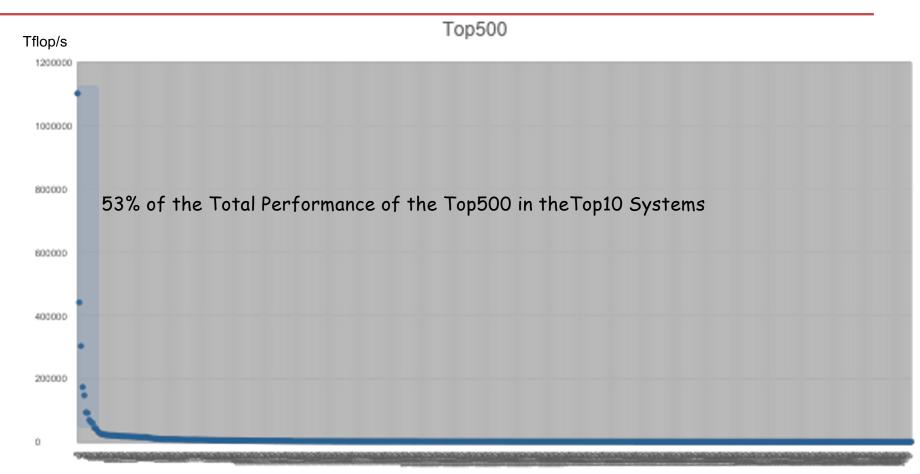

- 10,624 nodes
 63,744 GPUs
 1.1M Cores
- Cray Slingshot interconnect
 8 end points per node
- 10.9 PB DDR Memory
- 9.52 PB HBM
 - (230 PB Intel Optane)
- 230 PB of NVMe memory
 total (DAOS servers)


16

PERFORMANCE DEVELOPMENT

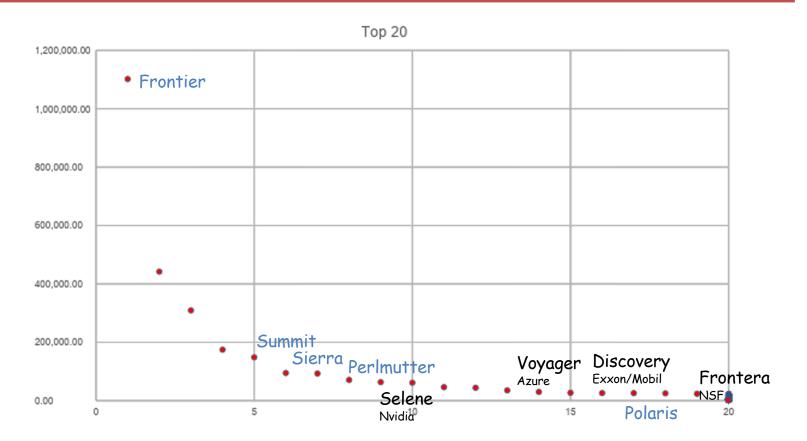

PROJECTED PERFORMANCE DEVELOPMENT

500

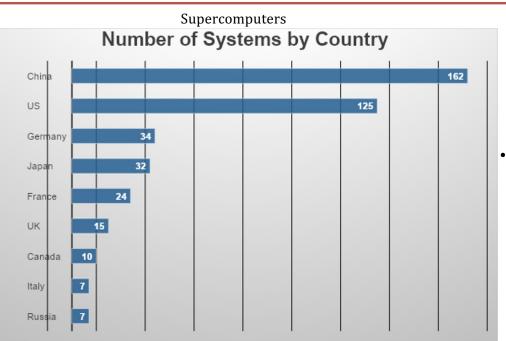


Plot of the Top500 Systems by Performance

Plot of the Top500 Systems by Performance



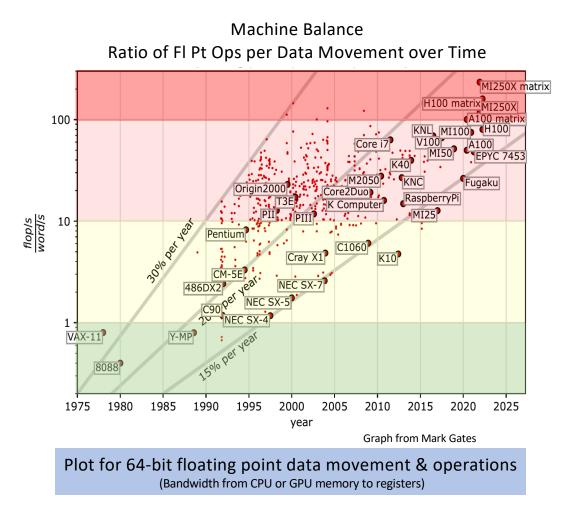
Plot of the Top500 Systems by Performance


flop/s	Top500			
1200000	DE's 18 Systems in t 2% of the Top500 Pe	•		
100000	1 Frontier 5 Summit 6 Sierra	ORNL ORNL LLNL	LLNL: SNL:	5 3.5
800000	8 Perlmutter 17 Polaris 27 Trinity 32 Frontier TDS	LBNL ANL LANL/SNL ORNL	ORNL: LBNL: ANL: PPNL:	3 2 2
800000	34 Lassen 45 Cori 84 Theta 107 rzVernal	LLNL LBNL ANL LLNL	NETL: LANL:	1 .5
403000	121 Tioga 130 CTS-1 Manzano 149 Joule 2.0	LLNL SNL NETL		
200000	165 Tenaya 243 CTS-1 Attaway 281 Cascade	LLNL SNL PNNL		
	467 Astra	SNL		

Plot of the Top20 Systems by Performance

China

China: Top consumer and producer overall. 5 main manufactures of HPC in China: Lenovo, Sugon, Inspur, Huawei, NUDT



Rumored 2 Exascale Systems in Chinese

- Qingdao Marine Sunway Pro "OceanLight" (Shandong Prov)
 - Completed March 2021, 1.3 EFlops Rpeak and 1.05 EFlops Linpack
 - ShenWei post-Alpha CPU ISA architecture with large & small core structure
 - Est 96 cabinets x 1024 SW39010 390-core 35MW
 - Science on this machine won Gordon Bell Prize in 2021
- NSCC Tianjin Tianhe-3
 - Dual-chip FeiTeng ARM and Matrix accelerator node architecture
 - Est -1.7 EFlops Rpeak

When We Look at Performance in Numerical Computations

- • •
- Data movement has a big impact
- Performance comes from balancing floating point execution (Flops/sec) with memory->CPU transfer rate (Words/sec)
 - "Best" balance would be 1 flop per word-transfered
- Today's systems are close to 100 flops/sec per wordtransferred
 - Imbalanced: Over provisioned for Flops

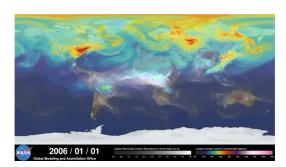
Performance and Benchmarking Evaluation Tools

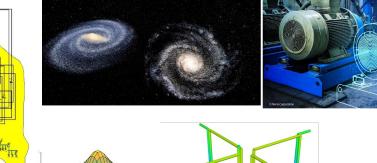
Linpack Benchmark - Longstanding benchmark started in 1979 Lots of positive features; easy to understand and run; shows trends However, much has changed since 1979

Arithmetic was expensive then and today it is over-provisioned and inexpensive

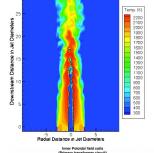
Linpack performance of computer systems is no longer strongly correlated to real application performance

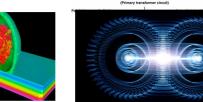
Linpack benchmark based on dense matrix multiplication

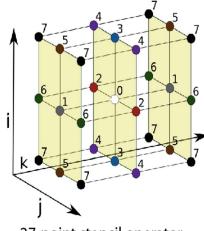

Designing a system for good Linpack performance can lead to design choices that are wrong for today's applications


Today's Top HPC Systems Used to do Simulations

- Climate
- Combustion
- Nuclear Reactors
- Catalysis
- Electric Grid
- Fusion
- Stockpile
- Supernovae
- Materials
- Digital Twins
- Accelerators
- . . .
- Usually 3-D PDE's
 - Sparse matrix computations, not dense


Models in Catalysis

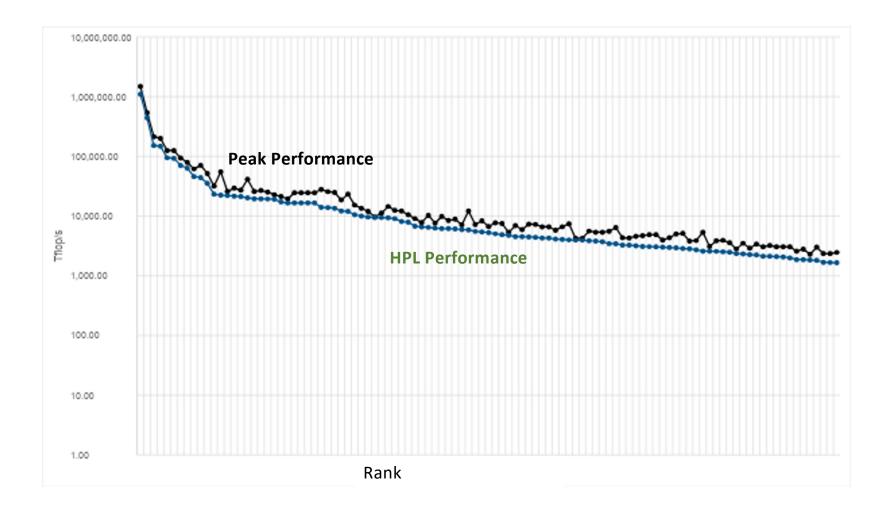


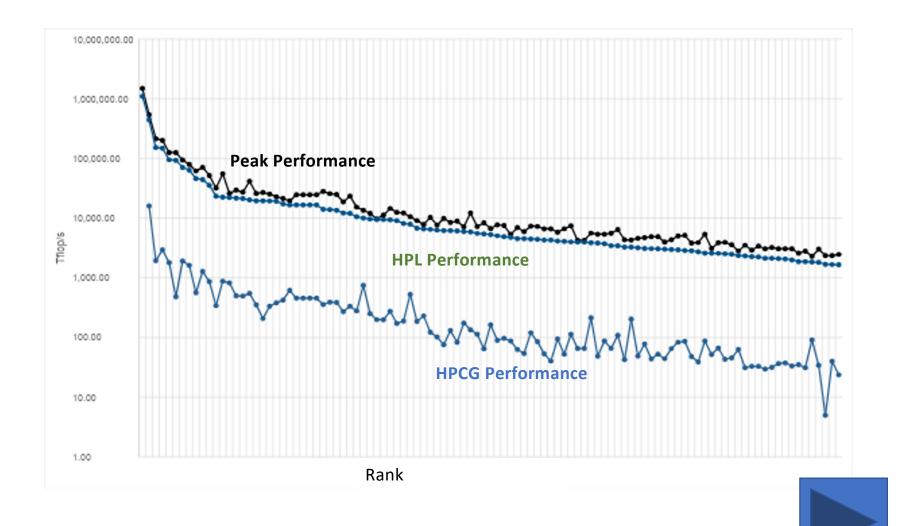


hpcg-benchmark.org With Piotr Luszczek and Mike Heroux

HPCG Results; The Other Benchmark

- High Performance Conjugate Gradients (HPCG).
- Solves Ax=b, A large, sparse, b known, x computed.
- An optimized implementation of PCG contains essential computational and communication patterns that are prevalent in a variety of methods for discretization and numerical solution of PDEs
- Patterns:
 - Dense and sparse computations.
 - Dense and sparse collectives.
 - Multi-scale execution of kernels via MG (truncated) V cycle.
 - Data-driven parallelism (unstructured sparse triangular solves).
- Strong verification (via spectral properties of PCG).





27-point stencil operator

HPCG Top 10, November 2022

						()	
Rank	Site	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)	Fraction of Peak
1	RIKEN Center for Computational Science Japan	Fugaku , Fujitsu A64FX 48C 2.2GHz, Tofu D, Fujitsu	7,630,848	442	2	16.0	3.0%
2	DOE/SC/ORNL USA	Frontier, HPE Cray Ex235a, AMD 3 rd EPYC 64C, 2 GHz, AMD Instinct MI250X, Slingshot 10	8,730,112	1,102	1	14.1	0.8%
3	EuroHPC/CSC Finland	LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 2GHz, AMD MI250X, Slingshot-11	2,174,976	304	3	3.41	0.8%
Think of a race car that has the potential of 200 MPH but only goes 2 MPH!						<u>!</u> *	
5	EuroHPC/CINECA Italy	32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail NVIDIA HDR100 Infiniband	1,463,616	175	4	2.57	1.0%
6	DOE/SC/LBNL USA	Perlmutter , HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10	761,856	70.9	8	1.91	2.0%
7	DOE/NNSA/LLNL USA	Sierra, S922LC, IBM POWER9 20C 3.1 GHz, Mellanox EDR, NVIDIA Volta V100, IBM	1,572,480	94.6	6	1.80	1.4%
8	NVIDIA USA	Selene, DGX SuperPOD, AMD EPYC 7742 64C 2.25 GHz, Mellanox HDR, NVIDIA Ampere A100	555,520	63.5	9	1.62	2.0%
9	Forschungszentrum Juelich (FZJ) Germany	JUWELS Booster Module, Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, Mellanox HDR InfiniBand, NVIDIA Ampere A100, Atos	449,280	44.1	12	1.28	1.8%
10	Saudi Aramco Saudi Arabia	Dammam-7 , Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, InfiniBand HDR 100, NVIDIA Volta V100, HPE	672,520	22.4	20	0.88	1.6%

From a talk: Distributed Training of Large Language Models on Fugaku Rio Yokota, Tokyo Tech

GPT-4 would take 8 Years to train on Fugaku or 3 months on the OpenAI platform

How Long It Will Take to Train GPT

GPT-4: 3×10²⁵FLOPs (speculated) GPT-3.5 (ChatGPT): 3×10²⁴FLOPs (speculated) GPT-3: 3×10²³FLOPs

Fugaku:

 FP32 6.76TFLOP/s × 158,976 = 1.07 EFLOP/s (theoretical peak)

 GPT-4: 328 days × 10

 GPT-3: 3.2 days × 10

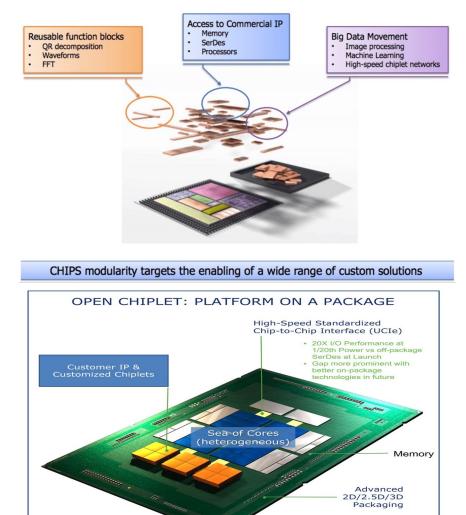
 GPT-3: 3.3 days × 10

 (No 16-bit Fl. Pt.)

OpenAl:

BF16 312 TFLOP/s × 25,000 = 7.8 EFLOP/s (theoretical peak) GPT-4: 45 days × 2 GPT-3.5: 4.5 days × 2 GPT-3: 11 hours × 2

Actual Performance

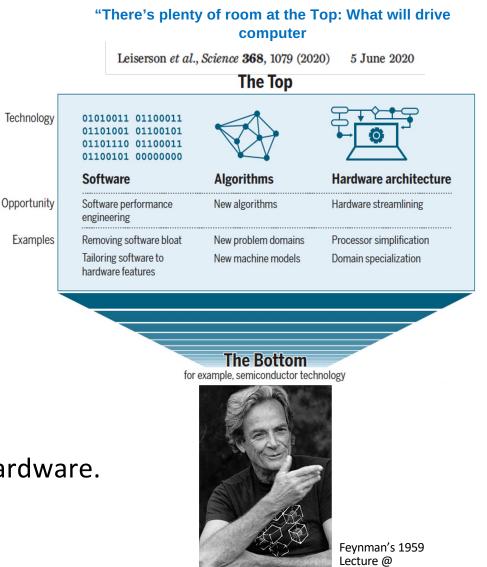

HPC: From Diversity to Monoculture

IBM S/	1968 360 Model 91	BBN 1981	1986 N Butterfly+	1993* Thinking Machines CM-5 (LLNL) SGI Challenge Announced	2001* NUDT Tianhe-1A (NSC Tianjin) NSF TeraGrid (NCSA/SDSC)	2012 Cray Blue Waters (NCSA) 2011*	2019 HPE Acquires Cray
	A Goddard)	Caltech Cosmic Cube+ 1977 1980 DEC VAX Texas TRAC+ Announced	1988 Intel iPSC 	Cray Researc		Fujitsu K (RIKEN)	2016 ascale Project .aunched
1961 IBM 7030 Stretch (LLNL)	1972 Illinois ILLIAC IV+	1982 NYU Ultracomputer+ 1976 Cray-1 1984 (LANL) Illinois Cedar+	Stanford DA 1988 Cray Y-N (NASA Am	Hitachi SR2201 & ((Tokyo and Tsul 1994	2004	 IBM BlueGene/Q* 2009* (LLNL) Cray Jaguar (ORNL) 2013*	2018* 2021* IBM Summit HPE Frontier (ORNL) (ORNL)
1965 CDC 6600 (LANL/LLNL)	1970 CDC 7600 (LANL/LLNL)	1984 CMU WARP+ 1979 Goodyear MPP+		1997* 1993 Intel ASCI HPF Standard (SNL - 1 ter 1991 1995	Red	IBM Roadrunner Sunway	
		1982 Cray X-MP (Digital Production	s)	C		2008 Google Cloud Announced 2006 mazon AWS Announced Microsoft Azure 2007 Announced Apple iPhone Announced	2021 Google TPU v4 2021 Amazon AWS Graviton3 2021 Alibaba CIPU 2022 Microsoft Azure ARM Ampere
1960	1970 CPU	1980 Vecto MPP/SM	1990 IP N)	2000 b/GPU Clou	2010 * Denotes #1 rank + Denotes research	•

* Reed, Gannon, Dongarra, "HPC Forecast: Cloudy and Uncertain," Communications of the ACM (February 2023)

Chiplets: Integrating Multiple Functions

- Rather than fabricating a monolithic system-on-a-chip, chiplet technology combines multiple chips, each representing a portion of the desired functionality, possibly fabricated using different processes by different vendors and perhaps including IP from multiple sources
- Chiplet designs are part of the recent offerings from Intel and AMD
 - Amazon's Graviton3 also uses a chiplet design with seven different chip dies
 - Advanced Query Accelerator (AQUA) for AWS Redshift, Amazon's powerful and popular data warehouse service, relies on a package of custom ASICs and FPGA accelerators


Heterogeneous Integration Fueled by an Open Chiplet Ecosystem (Mix-and-match chiplets from different process nodes / fabs / companies / assembly)

Conclusions

- The computing ecosystem is in enormous flux, creating both opportunities and challenges for the future of advanced scientific computing
- Looking forward, it seems increasingly unlikely that future high-end HPC systems will be procured and assembled solely by commercial integrators from only commodity components
- Advances will require embracing end-to-end design, testing and evaluating advanced prototypes, and partnering strategically ... real co-design.
- Leading edge, HPC computing systems are increasingly similar to large-scale scientific instruments (LHC, LIGO, SKA) with limited economic incentives for commercial development

The Take Away

- HPC Hardware is Constantly Changing
 - Scalar
 - Vector
 - Distributed
 - Accelerated
 - Mixed precision
- Three computer revolutions
 - High performance computing
 - Deep learning
 - Edge & AI
- Algorithm / Software advances follows hardware.
 - And there is "plenty of room at the top"

