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FUNDAMENTAL CHALLENGES IN COMPUTING 

• Limits of scaling have 
ushered in the “Golden Age 
of Computer Architecture” 
Hennessy & Patterson 2019

• Inefficiency of generality

• Performance saturation

Neuromorphic Computing gives a path forward for power 
efficiency scaling and meeting future computing needs.  

AI compute demands 
are increasing

Mehonic & 
Kenyon 2022, 

Open AI 
Research Blog
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CPUs GPUs FPGAs ASICs Neuromorphic Quantum TPUs

Novel Computing ParadigmsConventional Digital

Modern Computing

ApplicationsSensors Algorithms

• Scientific Computation

• Machine Learning

• Brain-derived algorithms

• Signal Processing

GT Neuron DAVIS 240C, 

DYNAPSEL
Intel Loihi SpiNNaker

Analog/Mixed-signal NeuromorphicDigital Neuromorphic Beyond CMOS devices

COMPUTING LANDSCAPE 

Mott- Memristor
Kumar et al., 2020

RERAM
Marinella et al., 2016

NeuroGrid

50 billion IoT devices by 2030

Davies 2018 Furber 2016 Brink 2013 Benjamin 2014
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Neuromorphic 
Accelerators

Heterogeneous 
Architectures 

Quantum 
Computing

Emerging 
memory

5-10 years 15-20 years

Extremely 
Heterogeneous

ANY ANY

ANY ANY

ANY ANY

ANY ANY

ANY ANY

ANY ANY

ANY ANY

ANY ANY

Limits of scaling have 

ushered in the ‘Golden 

Age of Computer 

Architecture’

FUTURE OF COMPUTING: HETEROGENEOUS 
ARCHITECTURES

4

‘Truly Heterogeneous Computing’, Cardwell et al., SMC 2020

Co-Design is critical to build the next-generation heterogeneous systems

https://link.springer.com/chapter/10.1007/978-3-030-63393-6_23
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NEUROMORPHIC COMPUTING: INSPIRED BY 
THE BRAIN

Brain and Computing: Why make the connection ?
• High computational efficiency, Single neuron ~1MMAC/pW

• Processing and memory operations performed by the same 
components

• Self-organizing system

• Online learning

• Solving ill-structured problems

• Transfer learning

• Spiking/event driven communication, subthreshold 
computation

1MMAC/(s)/pW

1MMAC/(s)/uW

1MMAC/(s)/mW

Analog/ 
Compute-in-

memory techniques

Neuromorphic 
techniques

Neuromorphic techniques will be disruptive to how we 
develop our computing systems

MMAC: Million Multiply 
Accumulates

Hasler 2016
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NEUROMORPHIC COMPUTING

GT Neuron INI, ETH ZurichIntel Loihi/ 
Loihi 2.0

SpiNNaker/ 
SpiNNaker 2

Analog/Mixed-SignalDigital Neuromorphic Beyond CMOS Devices

IBM TrueNorth

Stanford Neurogrid

Mott- Memristor ECRAM

RRAM Crossbar MTJ

Brink et al., 2013

NeuRRAM
UCSD/Tsinghua 

ODIN (Open-source)

SNL hosts Intel’s 50 
million neural 
supercomputer

Scaled to a billion 
neurons
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NEUROMORPHIC BUILDING BLOCKS
Neuromorphic offers computational 

richness we can leverage, to move beyond 
today’s computational limitations. 

Analog Crossbars using 
NVMs

Learning Synapses

APPLICATIONS

Brain-inspired 
algorithms

Scientific 
Computing

AI/ML (ANN, SNN)

Neural Path 
Planning

Koziol et al. 2013

Edge Computing

Many different models 
for neurons, synapses, 

online learning and 
dendrites.

Silicon Cochlea

Winner-Take-All

Silicon Retina/ Event Sensor 

George Cardwell et al. 
2013

Dendritic Processing

Random Walks
Smith et al. 2021

Lazzaro et al. 1988

Posch et al. 2014Liu  et al. 2020

Delbruck  et al. 
2020
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DAVIS 240C  
Event-based 

Sensor

Intel’s Loihi
Neuromorphic 

Processor

Neuromorphic Sensor Node 
(Edge Classification)

Low power, SWaP 
constrained 

A
LG
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H
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R
D
W
A
R
E

NEUROMORPHIC EDGE COMPUTING
8

External Partnerships: Intel (Intel Neuromorphic Research Community), 
Event-Based sensing group (AFRL, MITRE, Space Force, AFA)

Background 
Subtraction

Target 
Classification

Event Sensor
Input

Prophesee
Gen4

Satellite with neuromorphic 
sensor+ processor

Supervised Machine Learning Approach- SLAYER
SpikeMS for Background Subtraction

IBM Gesture Dataset

Applications: Space 
and Remote Sensing, 

Robotics 

FalconNeuro on ISS, 
McHarg et al. 2022
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SpikeMS: Prophesee Driving Data

9

Input Prediction

SpikeMS: Parameshwara et al. , IROS 2021

Post-SpikeMS removing most 
background information

Prophesee Event Sensor Output
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SpikeGenerator

Inhibitio
n

Inhibitio
n

A

B

A

A

B

BDirection

Direction

Pattern 
DOWN

Pattern UP

DOWN 
detected

UP 
detected

DIRECTIONALLY SELECTIVE
DOWN 
detected

UP 
detected

Led Motion 
Down

Loihi

delay 1 delay 1

delay 1 delay 1

delay 1

delay 1

Cardwell et al. 2023 (In review)
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NEUROMORPHIC COMPUTING CHALLENGE: 
SCALABILITY VS. COMPLEXITY

• However, to achieve brain-like 
complexity we need both scaling 
and rich dynamics.

• Solving ill-structured problems

• Online learning

• Transfer learning

Scalability (# of Neurons, Synapses)

Intel Loihi
100 Million 
neurons

IBM TrueNorth
1 Millions

Stanford NeuroGrid 
1 Million Neurons

Dragonfly Brain
1 Million Neurons

Mouse Brain
(100 Million)

Analog 
Neuromorphic Huge 

Gap

B
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lo
g
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m
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x
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y

Human Brain
(100 Billion)

Understanding fundamental mechanisms 
in neuroscience, translated to algorithms 

and models will influence next-
generation devices, architectures and  

intelligent computing systems
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INCREASING “BIOLOGICAL COMPLEXITY”

LIF neuron
• Single passive compartment
• Spikes
• Limited dynamics
• Relatively easy to scale

Biological neuron
• Dendrites = intricate structure and 

dense connectivity
• Complex pattern of active conductances 
• Rich dynamics , multiple patterns of 

spiking, subthreshold computation
• More computational power, not 

compact 

Novel devices and materials can 
help bridge this gap.

Increase computational efficiency 
and

Increase computational density

LIF: leaky Integrate and Fire
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MODELING DENDRITES 

• Dendrites are tree-like 
structures that connect neurons 
synapses to its soma.

• Dendrites are not wires!

• They can perform interesting 
computation like
• Coincidence Detection
• Current Summation
• Directional selectivity
• Non-linear filtering
• Amplification of Synaptic inputs

Nease et al. 2011

Dendrites Modeled as a 
cable

RC delay line
RC delay line using 
CMOS transistors

London 2005, Hausser 2003
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WHY IS THIS USEFUL?

14

• Dendrites perform non-linear 
computation like a multi-layer NN 
enabling  “neuron within a neuron” 
capability.

• Footprint of dendritic circuits smaller 
compared to a neuron circuit. 
• Dendrite (1-2 transistors with sub-threshold 

FGs) [George 2013], HH Neuron circuit (7-8 
transistors)[Farquhar and Hasler], LIF (8-10 
transistors) [Indiveri 2011]

• Proposed multi-gate FeFET for dendrites 
with 3D stacking for dense connectivity 
[Kwabena, Nature 2022], Energy estimated 
to program device ~29.6fJ/event [Saha et 
al., 2021]

• Computing in the interconnect, more 
energy efficient computation

Dendrocentric Learning- Kwabena, 
Nature 2022

NanoDendrite
Multi-gate FeFET

https://www.nature.com/articles/s41586-022-05340-6.pdf
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DRAGONFLY EXAMPLE

Gonzalez-
Bellido, UMN

Chance 2020 
SNL, Baylor

Devices & 
Circuits

Algorithms Physics of 
Computing

Coordinate transformations from Dragonflies to Neuromorphic Hardware

Davies 2018George Cardwell 
2016

Lead PI: Frances Chance, SNL

Increased collaboration between neuroscience and 
neuromorphic engineering will facilitate  development of 

novel neural-inspired architectures. 

DOE ASCR (FY21-24)
Department of Energy

Advanced Scientific Computing Research

DRAGONFLY 
EXPERIMENTS

COMPUTATIONAL 
MODEL

NEUROMORPHIC 
IMPLEMENTATION

August 2021

GT FPAA Intel’s Loihi

October 2021
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Multiplication in a single neuron
Devices & 
Circuits

Algorithms Physics of 
Computing

Collaborators: University of Texas at Austin, Intel Neuromorphic Research Community

Shunting Inhibition in Neuromorphic Dendrite

Chance & Cardwell, NICE 2022

Lu et al. 2020
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NEXT-GENERATION NEUROMORPHIC 
SYSTEMS

Evolutionary/ 
Reinforcement Learning 

approaches

Stanford n3XT Platform 
(Aly et al., 2018)

Mott- Memristor
Kumar et al., 2020

In order to innovate we need 
cross-talk across the stack. 

BRN Report 
2018

ASCR Workshop on 
Reimagining Codesign

2021
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CODESIGN IS CHALLENGING

AI-enhanced 
Codesign 

Reinforcement 
Learning/Evolutionar
y methods for Circuit 
and System design

Co-Design Tools for Novel 
Architectures

Next-generation Neuromorphic 
Architectures

COINFLIPS
Probabilistic Neural 

Computing, 
Leverage stochasticity in 
beyond-CMOS devices

DOE ASCR/BES (FY21-24)AS&T LDRDs (FY21-23)

DRAGONFLY 
Dendritic processing, Coordinate 
transformation from Dragonflies 

to Neuromorphic hardware,
Analog and digital

DOE ASCR (FY21-24)
Advanced Science & Technology 

Laboratory Directed Research and Development

Department of Energy
Advanced Scientific Computing Research

Basic Energy Sciences

Department of Energy
Advanced Scientific Computing Research

External Collaborators: UT Austin, Intel, Infineon Memory Solutions, Georgia Tech, 

UMN, Baylor University, UT Knoxville, Temple University, NYU, ORNL

ASC-AML (FY20-22)
Advanced Simulation & 

Computing -
Advanced Machine Learning
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AI-ENHANCED CODESIGN

Our AI-enhanced framework would need inputs from 
algorithms, devices, architectures and ML-based hyper-
parameters. The framework will enable new capabilities.

Data  and Models Hyper Parameters

Topological Analysis
Device and Architectural

Constraints
Machine Learning

• Learning Rate
• # of Epochs
• Hardware based constraints 

in architecture search

Neural
Circuits & Architectures

• Charge time
• Energy efficiency
• SWaP 
• Connectivity
• Extreme Temperature 

environments
• Size constraints
• Discover novel circuit 

topologies

• Data Sweeps
• Device Models
• ASIC behavior models

Mott- Memristor
Kumar et al., 2020

Game Theory Reinforcement 
Learning

Works based on Reinforcement 
learning (Goldie & Mirhoseini, 
2020) and Game theory augmented 
techniques (Cooksey & Mavris 2011, 
Ganesan et al., 2015 )
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AI-ENHANCED CODESIGN: NEURAL CIRCUITS

We developed an RL algorithm approach which is capable of building 

very simple circuits.  

Simple 
delay line Pattern 

Detection

Devices & 
Circuits

Algorithms

Physics of 
Computing

0

50000
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0 5 10 15
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g
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p

s

Signal Length (Bits)

Training time to > 99% success

Crowder et al. 2023 (In review)
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AI-ENHANCED CODESIGN: COINFLIPS 
Lead PI: Brad Aimone

Microelectronics Codesign Award 
DOE ASCR/BES (FY21-24)

Department of Energy
Advanced Scientific Computing Research

Basic Energy Sciences

https://coinflipscomputing.org/
Collaborators: NYU, ORNL, Temple 
University, UT-Austin and UT-Knoxville

https://coinflipscomputing.org/
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AI-GUIDED CODESIGN OF PROBABILSITIC 
CIRCUITS • Unfair coins can be combined with AI-designed 

neural circuits to allow sampling of application 
desired probability distributions, avoiding 
accept/reject steps.

• We leveraged evolutionary algorithms for circuit 
design and optimization

• LEAP (Library of Evolutionary Algorithms in
Python)

• EONS (Evolutionary Optimization for
Neuromorphic Systems)- Schuman et al. , 
2020 

• We used abstracted device models for TD and 
MTJ to capture functionality and energy usage.

AI-Guided Approach 

Cardwell et al., International Conference on 
Rebooting Computing (ICRC) 2022
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AI-GUIDED CODESIGN OF PROBABILSITIC 
CIRCUITS

• Weights are customized for the 
device’s behavior to target the 
best performance in terms of KL 
divergence and energy usage.

• One of the challenges in 
optimizing for both algorithms 
and devices was appropriately 
abstracting the device models 
and algorithmic constraints. 

• The functional models 
developed
will also be evolved in time as 
new device data and research 
emerges. 

• Our framework can 
accommodate any emerging 
device type.

Optimized weight values for each device

Cardwell et al., International Conference on 
Rebooting Computing (ICRC) 2022 

Probabilistic Mixing Algorithm 

Multi-objective optimization of weights of fitness function for 
optimal KL divergence, biased weight and energy usage.
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COINFLIPS APPLICATION: NUCLEAR PHYSICS 
SIMULATIONS

• For a particular collider physics 
simulation [Pierog et al., Phy Rev. 
2022], ~ 270K pseudo- random 
numbers needed for a single 
event, with billions of events 
needing to be simulated. 

• CPU time is ~ 30-50% of the total 
compute time

• Direct random number generation 
leveraging stochastic devices can 
promise significant energy savings 
for such applications

24
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Misra et al., Advanced Materials 2022

Random numbers are a limiting computational cost for 
some nuclear physics applications
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COINFLIPS APPLICATION: NEUROMORPHIC 
MAXCUT

25

• Loihi generated graph cuts of 
neuromorphic GW algorithm match 
conventional MAXCUT solver generated 
cuts.

• Results demonstrate effective 
implementation on current neuromorphic 
platform with minimal loss and potential 
to take advantage of future accelerated 
neuromorphic platforms.

• MAXCUT has broad real-world 
applications ranging from circuit design to 
power grid resilience, and these 
applications are well positioned to take 
advantage of dramatically accelerated 
neuromorphic implementations.

Theilman & Aimone, Neuro-Inspired 
Computational Elements Conference (NICE 2023) 

Loihi generated graph cuts of neuromorphic GW algorithm
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AI-ENHANCED CODESIGN ACROSS SCALES
Circuit Design System Design Architecture Design

A
p

p
ro

ac
h

Analytical and cycle-
accurate tools, network 

simulation tools

Evolutionary/RL approaches RL approaches RL approaches

Device  Design

Can we 
leverage AI to 

generate 
specifications 

for novel 
devices?

Algorithm Design

Neural 
Array

Fan (UCF), 2018

0
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AI-ENHANCED CODESIGN ACROSS SCALES
Circuit Design System Design Architecture Design

A
p

p
ro

ac
h

Analytical and cycle-
accurate tools, network 

simulation tools

Evolutionary/RL approaches RL approaches RL approaches

Davies, 2018
Ramakrishnan, 2013

Device  Design

Mott- Memristor
Kumar et al., 2020

Can we 
leverage AI to 

generate 
specifications 

for novel 
devices?

Algorithm Design

Chance 2020 
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CHALLENGE: SOFTWARE TOOLS
• ATHENA (Analytical Tool to evaluate Neuromorphic Architectures) will be leveraged to do design space 

exploration of novel architectures that leverage neuromorphic and emerging devices.

Cycle-Accurate Tools
(Better Modeling,

Computationally expensive)

Hardware 
Implementation

Helps address many 
different input types 

C++ code, Tensorflow, 
Pytorch etc.

Sandia 
Tool

FuguMLIR 

Cost Model
ATHENA

Conventional Digital Novel Computing

Neuromorphic GPUs FPGAsCPUs ASICs Beyond-CMOS 

Mapping

Systolic Arrays, Analog Accelerator, 
Spiking Accelerator

LLVM 

Dataflow
Accelerator

Custom 
Tools

Open-Source 
Tools

Low-level mapping

Cycle-accurate Tools

Assayer 
DSE

MARVEL

MAESTRO

TIMELOOP

ACCELERGY

TIMELOOP

ACCELERGY

UNION( ARIAA/ASCR)

ASC-AML

ASC

Mapping

Analytical 
Tools

(Approximate 
Modeling)

Interface

ATHENA

PI: Siva 
Rajamanickam

PI: Aimone

PI: Vineyard

Agarwal et al.

Rodrigues et al.

“Neural Mini-apps”,
Vineyard et al., NICE 2022



29ATHENA 
(Analytical Tool to Evaluate Heterogeneous Neuromorphic Architectures) 

29

• ATHENA will quickly 
evaluate 
performance metrics 
of analog 
architectures

• Developed as part of 
a larger ecosystem
• Tools to enable next-

generation hardware 
design prototyping Digital Accelerators Novel Computing

Plagge et al., International Conference on 
Rebooting Computing (ICRC) 2022
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ATHENA – HARDWARE PERFORMANCE

• ATHENA was used to compare 
the performance of multiple 
hardware devices against 
various deep learning networks

• The SONOS tile-based 
architecture performed well 
across networks, with one 
notable exception: the 
Inception v3 network

• This performance difference 
could be explored – showing 
ATHENA’s potential for 
codesign work

30

Plagge et al., International Conference on 
Rebooting Computing (ICRC) 2022
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SANA-FE: NEUROMORPHIC SYSTEM 
MODELING & CODESIGN

31

• Tools are needed to rapidly estimate 
performance of neuromorphic architectures 
for design-space exploration 

• General & extensible spiking H/W simulator

• Model functional behavior & track 
performance

• Schedule messages & intra-core interactions

• Calibrate simulator to real-world systems

• Accurately predicts latency & energy of 
gesture categorization spiking neural 
network (SNN)

• Faster than existing simulator (NeMo)

Simulator Kernel

build architecture

initialize network

for all timesteps:

get external inputs

for all tiles:

for all cores:

process neuron

send messages

write results

Configuration & Input Spikes Architecture Description

Performance Estimates

Mapped Spiking Neural 
Network

NeMo, Plagge et al. SIGSIM-PADS 2016

SANA-FE: Simulating Advanced Neuromorphic 
Architectures for Fast Exploration

Latency Estimation for Hand Gesture Categorization

J. Boyle et al. 2023 (In Review)
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SANA-FE: NEUROMORPHIC SYSTEM 
MODELING & CODESIGN

32

Output Axon Unit

Soma Unit

Dendrite Unit

Synapse Unit

Input Axon Unit

Core

Synapse address

Filtered weight

Processed weight

Axon address

Spike messages

• Neuromorphic system architectures

• System design space exploration

• Spiking Neural Network-based H/W

• Novel features e.g., analog compute

• Modeling & benchmarking for codesign

• Fast spiking H/W simulation

• General & extensible framework

• Functional model & performance

• Calibrate simulator to real-world H/W

• Accurately estimate latency & energy

SANA-FE: Simulating Advanced Neuromorphic 
Architectures for Fast Exploration

J. Boyle et al. 2023 (In Review)
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COINFLIPSDRAGONFLY

NEUROMORPHIC COMPUTING CHALLENGE 
SCALABILITY VS. COMPLEXITY

Scalability (# of Neurons, Synapses)

Intel Loihi
100 Million 
neurons

IBM TrueNorth
1 Millions

Stanford NeuroGrid 
1 Million Neurons

Dragonfly Brain
1 Million Neurons

Mouse Brain
(100 Million)

Analog 
Neuromorphic Huge 

Gap

B
io

lo
g
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al
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o

m
p
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ty

Human Brain
(100 Billion) Hardware aware algorithms 

are critical for AI

• Novel neuroscience 
information translated to 
algorithms and models will 
influence next-generation 
devices, architectures

• Novel Algorithms
• Novel Devices
• Increased connectivity and 

communication (3D, 
wafer-scale, photonics)?
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NEUROMORPHIC APPLICATIONS

Probabilistic 
Computing
COINFLIPS

Heterogeneous 
Computing

Applications

Brain-inspired 
Algorithms
Dragonfly

Dendritic Processing

Scientific 
Computing

• Random Walks
• High-fidelity Physics

Simulations

AI/ML 
Applications

ANNs
SNNs

Edge Computing
• Event sensors

• Spatio-temporal 
processing
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Finally, policymakers should take proactive steps to ensure
that researchers with small or moderate budgets can

effectively contribute to the AI research field. 

The price of computations in gigaFLOPS has not 
decreased since

2017.15

price per 
computation

Major overhauls of the computing paradigm like quantum
computing or neuromorphic chips might one day allow for vast

amounts of plentiful new compute.

Limited direct 
neuromorphic investment 
even though it has been a 

more established field

Enable resources for 
research. Not just compute 

but training

GOING FORWARD

Concentrating
state-of-the-art technologies among the small number of

research centers possessing extremely large compute
budgets risks creating oligopolistic markets and shrinking

the talent pool and opportunities for researchers.
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LONG-TERM GOALS FOR NEXT-GENERATION OF 
NEUROMORPHIC SYSTEMS

• How can AI-enhanced techniques 
accelerate scientific discovery?

• Different AI techniques at the device, 
circuit, system design and 
architecture level.

• Enable encoding of domain 
knowledge

• Enable concurrent contribution from 
researchers 

• Leverage the physics of devices to do 
computation (analog)

• Embrace stochasticity of devices
• Analog devices are noisy. How can we 

incorporate this into algorithms?

• Algorithms are cognizant of architecture 
and device constraints.

• Leverage the complex dynamics of devices.
• Bio-inspired techniques, adoption in 

computing

• Novel devices with complex dynamics 
• Radiation-hardened devices
• Reconfigurable devices
• Computational efficiency and 

computational density

• Software tools to support 
design and development

• Integration with AI-enhanced 
techniques?

• Heterogeneous architectures
• CoDesign to optimize communication and 

memory bottlenecks
• 3D architectures, Photonics
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THANK YOU!
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