arm

Co-Design of Data Centric HPC Systems Salishan 2022

Doug Joseph, ARM Research ARM Inc

Co-Design Focus Areas

- + Application Areas
 - Data Analytics
 - Machine Learning
 - Science and Engineering
- Algorithmic Methods
 - Graph Analytics
 - Sparse / Dense Tensor Algebra
 - Statistical Analysis
 - Deep Neural Networks
- → Software Support
 - DSL Compiler and Runtimes
- Hardware Architecture
 - Network on Chip
 - Memory Hierarchy
 - HW Support for Sparsity
 - Data Centric Accelerators
 - Component Interfaces
- → Enabling Technologies
 - 3D Hybrid Bonding
 - Wafer Fanout Packaging
 - Integrated Power Delivery
 - Advanced Thermal Management
 - 2.5D / 3D Chiplet Interfaces
 - Co-Packaged Si Photonics

Comprehensive Co-Design Flow

Technology Landscape

Memory Scaling

DRAM Bit Density

- Bit density is die capacity in Gb divided by die size in mm².
- The solid black line is the long term trend based on actual values.
- The dashed black line is the forecasted trend going forward.

[1] Strategic Cost Model – 2020 – revision 00

IC KNOWLEDGE LLC

NAND Bit Density

- The transition from 2D NAND to 3D is enabling the continuation in bit density scaling by using the third dimension.
- Bit density is the number of gigabits of memory on the die divided by the die size.
- Multiple points for the same company in the same year represent MLC/TLC/QLC/PLC/HLC.

[1] Strategic Cost Model – 2020 – revision 00

Logic Scaling

N3 PPA (vs. N5 V1.0)

Speed Improvement at Same Power	Power Reduction at Same Speed	Logic Density	SRAM Density	Analog Density	
10~15%	25~30%	~1.7x	~1.2X	~1.1x	

Scaling variance increases each generation.

- SRAM scaling essentially ends at 3nm
- Analog scaling essentially ends at 5nm

ARM A78 Sub-Block Speed/Power

- with TSMC High Performance Library and Solutions

3D Integration Technologies (TSMC, Hot Chips 33)

Inter-chip Interconnect Scaling Roadmap

TSMC-SoICTM

Lite-IO (TSMC)

25
Tbps/mm^2

0.02~0.04 pJ/bit

2~4 Gbps

Thermal Management & Power Delivery are Primary Concerns for 3D Integration. (Power Density vs. Power Efficiency Trade-off0

Integrated Si Micro-Cooler (ISMC) for Ultra-HPC

- Thin SiOx bonding interface (OX TIM) by fusion bonding Si lid a
- Low interface TR, even though K_{SiOx} at low single digit W/m·K

InFO_SoW (System-on-Wafer)

CoWoS®	InFO				
HBI (Caden	HBI (Cadence, Synopsys), LIPIN				
1.15~2 Tbps/mm	1.15~2 Tbps/mm				
	0.2~0.5 pJ/bit				

Characteristics / KPIs	Standard Package	Advanced Package	Comments
Characteristics			
Data Rate (GT/s)	4, 8, 12, 16, 24,	32	Lower speeds must be supported -interop (e.g., 4, 8, 12 for 12G device)
Width (each cluster)	16	64	Width degradation in Standard, spare lanes in Advanced
Bump Pitch (um)	100 – 130	25 - 55	Interoperate across bump pitches in each package type across nodes
Channel Reach (mm)	<= 25	<=2	
Target for Key Metrics			
B/W Shoreline (GB/s/mm)	28 – 224	165 – 1317	Conservatively estimated: AP: 45u for AP; Standard: 110u;
B/W Density (GB/s/mm²)	22-125	188-1350	Proportionate to data rate (4G – 32G)
Power Efficiency target (pJ/b)	0.5	0.25	
Low-power entry/exit	0.5ns <=16G, 0.5-1ns >=24G		Power savings estimated at >= 85%
Latency (Tx + Rx)	< 2ns		Includes D2D Adapter and PHY (FDI to bump and back)
Reliability (FIT)	0 < FIT (Failure I	n Time) << 1	FIT: #failures in a billion hours (expecting ~1E-10) w/ CXi Flit Mode

Adva	Advanced Package					
Sideband	Sideband Data Cluster					
Sideband FW-CLK x64 Valid Track Standard Package						
Sideband Data Cluster						
Sideband FW-CLK X16 Valid Track						

Die - 1		Die - 2			
x16	<>	x16	CL-0 x16	<>	CL-0 x16
v22	,	v22	CL-0 x16	<>	CL-0 x16
x32	32 <>	x32	CL-1 x16	<>	CL-1 x16
		CL-0 x16	<>	CL-0 x16	
			CL-1 x16	<>	CL-1 x16
x64	<>	<> x64	CL-2 x 16	<>	CL-2 x16
		CL-3 x16	<>	CL-3 x16	

(1, 2, or 4 Clusters can be combined in one UCle Link)

Photonics (TSMC, Hot Chips 33)

Optical Interface (1/2): Overview

Light can be coupled either vertically (GC) or horizontally (EC):

- GC, as a surface coupler, requires cleanliness and integrity of the optical path from grating surface all the way to the fiber core.
- For EC, care must be taken to prevent the expanded optical mode from overlapping with the bulk silicon underneath SSC.

tsine

Optical Interface (2/2): GC and EC with COUPE

- GC is designed with optical path intrinsically sealed with dielectrics all the way to the fiber attachment unit, achieving IL (1D apodized GC) -1.03dB @1310nm for TE
- EC avoids optical loss due to beam overlapped with underneath Si, achieving IL -0.6dB @1310nm for TE&TM modes
- With COUPE, GC and EC can built with essentially the same structure.

DARPA PIPES (Columbia-AIM)

	Completed Phase 1	Phase 2
Key outcomes	EIC/PIC MCM 1Tbps/link 2 port prototype. Benchtop component demonstration	Integrated link demonstration performance traceable to scaled system
Energy per bit	0.5 pJ/bit	0.2 pJ/bit
Areal bandwidth density	5 Tbps/mm ²	5 Tbps/mm ²
Channel data rate	16 Gbps	
Comb bandwidth >0.5mW	45nm; 80nm >0.1mW	
Aggregate bandwidth	2 Tb/s	10 Tbps
Total port count	2	≥ 1
Power Penalty	16 dB	
Link latency	40 ns + TOF	100 ns + TOF
Link reach (between packages)	1 meters	10 meters
Bit error ratio (BER)	10 ⁻⁹	10 ⁻¹²
Hardware delivered	Benchtop MCM prototype, components demo	2 demo units
Operating temperature range	Room temperature	Room temperature to 80°C

Electrical Interface (1/2)- Parasitics and PDN Impedance

- COUPE has low parasitics at EIC-PIC Electrical Interface, 85% lower capacitance compared with uBump
- 51% reduction in PDN impedance comparing with uBump w/ TSV; and 92% reduction of uBump w/ wire-bonding.

NVidia Grace-Hopper SuperPod

SCALE-UP WITH NVLINK NETWORK

	A100 SuperPod			H100 SuperPod			Speedup	
	Dense PFLOP/s	Bisection [GB/s]	Reduce [GB/s]	Dense PFLOP/s	Bisection [GB/s]	Reduce [GB/s]	Bisection	Reduce
1 DGX / 8 GPUs	2.5	2,400	150	16	3,600	450	1.5x	3x
32 DGXs / 256 GPUs	80	6,400	100	512	57,600	450	9x	4.5x

Moving compute to data has big payoff at scale!

The need for integrated Si Photonics is growing!

3D Co-Design Study Roadmap

2.5D + 3D Scaling Opportunities

Key Technology: Separate Memory & IO Chiplet

Edge (64 cores ~100W)

- One 3D SoC
- 32GB HBM3 stack

Co-Design: 3D Physical Design

3D design challenges

Current = 1
Bumps = 1
Current/Bump = 1
Current/Bump = N

- System Partitioning
 - Node, tier assignment, partitioning and 3D floorplanning
- Power Delivery & Management
 - Power allocation and distribution, voltage droop management

- Timing for synchronous 3D
 - Inter-tier skew and clock design strategies for 3D
- Thermal Management
 - Thermal sensing capability, and tier placement

Partitioning: 3D system design case-study

- 32-core system
 - High-performance Arm cores
 - System-level caches (SLC)
 - Cache-coherent mesh interconnect
- Limited space in 2D
 - More compute or more memory?
- 3D integration
 - Decouples increasing number of cores from cache capacity
 - Allows adding SLC expansion tiers

3D timing: Inter-tier skew

- Process variation across tier
 - Leads to inter-tier skew on uncommon clock tree path
- Connect at root
 - Small #3D connections but large uncommon path => Large inter-tier skew
- Connect near leaf
 - Large #3D connections but small uncommon path => Small inter-tier skew

Thermal Solution Landscape

	Remote Cooling	Intra-lid / Package Cooling	Embedded Cooling
Cooling efficiency	Low	Medium	High
Cost	Low	Medium	High

3D thermal design

- Power density increasing as area continues to scale down with newer technology
- Temperature rise is proportional to the power density of the design
- Higher power die near the heat sink is preferred for lower temperature rise

3D power delivery and management

L. Zhu et al., ISLPED'21

3D power delivery and management

- TSV pitch and parasitics have significant impact on voltage drop
- Decreasing power TSV pitch
 - Decreases voltage drop
 - Increases area overhead
- Trade off the voltage drop and area overhead for power delivery TSVs

Co-Design: 3D Network on Chip

Expanding NoC to 3D layers

- → Higher bi-section bandwidth
- + Research topics
 - 1) Topology and system partitioning exploration
 - 2) Explore adaptive routing algorithms
 - 3) QoS management
 - 4) Cache Coherence Scaling
 - 5) SLC optimizations
 - 6) Support for Multicast and Collectives

Multi-layer 3D mesh with 4x4x4 XPs

2D vs 3D tiles: latency and bandwidth

10x10 mesh / 128 cores / 4xHBM2 stack

+ 10% – 30% faster accesses with 3D tiles

Bandwidth

- Future-proof NoC need to provision for even more BW (e.g. >4TB/s for HBM3)
- Bandwidth improves by adding more data channels and bisection BW?
 - Not scalable with a 2D mesh
 - 3D mesh naturally increase channel availability (see notes for this slide for details)

Topology and system partitioning exploration

- Explore tradeoffs of different endpoint distribution for cores, SLC, HBM, accelerators and IO
- Explore mesh topologies (e.g. regular/irregular meshes, hypercubes, fat trees)
- Potential for novel cache hierarchy options with 3D integration and 3D NoC
- DSE example: 3 Layers
 - Top: Cores
 - Middle: Local HNFs (LH) and mesh
 - Bottom: Global HNFs (GH) + mesh
- Some more DSE points
 - Mesh on core layer ?
 - CHI channels per layer
 - Num of Z-dim connections vs TSV placement constraints

Co-Design:
Data Centric Accelerators
&
DSL Compiler / Runtimes

Current systems are optimized for regular computations

Regular / Dense (e.g., dense linear algebra)

Vector processing, GPUs **Prefetchers** Memory optimized for bulk transfers (Lack of) HW synchronization

Language-level support (code and data abstractions)

Irregular / Sparse (e.g., sparse linear algebra)

Result: Percentage of peak utilization in supercomputers

Dense linear algebra	50-80%
Sparse linear algebra	1-3%
Graph analytics	<<1%

X

Similar inefficiencies in accelerators (e.g., no/limited

support for sparse deep learning)

Update Batching (UB)

- Maximizes spatial locality of memory transfers using two-phase execution
- Binning phase: Logs updates to memory, dividing them into cache-fitting slices (bins) of vertices
- Accumulation phase: Reads and applies logged updates bin-by-bin

SpZip

- + SpZip fetcher accelerates data structure traversal and decompression
- + SpZip compressor compresses newly generated data before storing it off-chip
- + Fetcher and compressor execute a configurable dataflow graph of logical operators
 - Handle multiple/complex data structures by composing simple operators
 - Provide general support for graphs and sparse tensors (but trees, hash tables would require more operators)
 - Can be used in the context of a CPU or a specialized architecture

Memory Traffic Reduction

- → UB+SpZip reduces memory traffic
 - 3.3x without preprocessing
- \div 1.8x with preprocessing

Tensor Algebra Compiler

(http://tensor-compiler.org/)

A Domain Specific Language, Compiler and Runtime

- Raising the level of abstraction to enhance programmer productivity
- Generates optimized parallel distributed sparse tensor linear algebra code
- Sparse tensors are the dominant form of tensor
- Other Prominent DSL's: MLIR, Halide, GraphIT, TVM

THE TENSOR ALGEBRA COMPILER (TACO) Expressions A = Bc + a = Bc A = Bc + a = Bc A = Bc A = a - Bc = a - Bc + ba A = Bc A = A = Bc A = A = Bc (CD) $A_1 = \sum_{B \in A_1} B_{BaC_1} D_{A_1} = \sum_{B \in A_2} B_{BaC_2} D_{BaC_2} D_{BaC_2}$

TENSORS ARE EVERYWHERE

Supports all widely used sparse tensor formats

Initial Characterization of ECP Applications

App	Kernel Time	Kernel Type	Parallelism	Sparse/Dense	Primary API	Limiting factor
AMG2013	72%	CSR SpMV	High	sparse	TACO	Memory Bandwidth
ExaMiniMD	76%	Euclid Distance	High	sparse/graph	Graphit	Not vectorized, poor branch prediction
Laghos	50%	Tensor contractions	Medium	sparse/graph	TACO	CPU vector unit, MPI comm
miniAMR	88%	7-pt stencil	High	dense with multigrid	CoLa	L3 latency bound, unnecessary indirection
miniQMC	78%	Spline interpolation, DGEMM	High	dense	Halide/Tiramisu	DRAM bandwidth bound, FMA bound
miniVite	??	??	Low	sparse/graph	GraphIt	Memory latency, serial sections, mallocs
nekbone	70%	DGEMM, daxpy	High	dense	Halide/Tiramisu	Memory Bandwidth
PICSARLite	??	dense stencil	Low	dense	Halide/Tiramisu	Thread spawninig
SW4lite	90%	dense stencil	High	dense	Halide/Tiramisu	CPU bound needs better vectorization!
SWFFT	90%	copying/MPI	High	dense	Halide/Tiramisu	Memory Bandwidth, Network Bandwidth
FFTW	95%	butterflies	High	regular but sparse	Halide/Tiramisu	Memory Bandwidth
XSBench	95%	particle lookup/update	High	sparse/hash	Graphit	Memory Latency

Common Kernels mapped to APIs:

Sparse Tensor → TACO

Graphs → GraphIt

Dense Stencils/Tensors → Halide/Tiramisu

Multigrid → CoLa

Key Limiting Software Factors:

- serial sections, thread overhead, poor vectorization Key Limiting Hardware Factors:
- CPU vector unit
- Branch Prediction
- Memory Bandwidth & Memory Latency
- Network Communication

Backup

