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Co-Design Focus Areas

Application Areas

- Data Analytics

- Machine Learning

- Science and Engineering

Algorithmic Methods

- Graph Analytics

- Sparse / Dense Tensor Algebra
- Statistical Analysis

- Deep Neural Networks

Software Support
- DSL Compiler and Runtimes

Hardware Architecture
« Network on Chip

- Memory Hierarchy

« HW Support for Sparsity

- Data Centric Accelerators
- Component Interfaces

Enabling Technologies

- 3D Hybrid Bonding

- Wafer Fanout Packaging
Integrated Power Delivery
Advanced Thermal Management
2.5D / 3D Chiplet Interfaces
Co-Packaged Si Photonics

HW Support for
Sparse Compute

Data-centric
Acceleration,
Integration and
Data
Orchestration

Scalable System
Architecture
and IP

Data Analytics,
Science and ML
workloads

Runtime and

Compiler for

Extreme Scale
Systems

Inter-node
Network
Integration and
Interfaces

Power/Thermal
Co-Design for
2.5/3D

Performance
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Comprehensive Co-Design Flow

Hardware Loop Software Loop

Physical Data Analysis

Modeling and

Analysis Problem

HW HW

Performance
Modeling and
Analysis

Algorithmic

Acceleration Acceleration

A L
Architecture Methods nalysis

-- Goals

-- Goals

+ Increase energy efficiency - Reduce data movement

- Increase resource utilization - Improve data locality

- Improve reliability / availability - Improve load balance

- Improve cost / performance « Move compute to data
« Programmer productivity

DSL Compiler
/ Runtime
Automation

Design Sizing HLD and Kernel

Specifications extraction
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Technology Landscape
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Logic Scaling

N3 PPA (vs. N5 V1.0)

Power i
Reduction
at Same Speed

Speed ‘

Improvement LA

‘ Density

Analog

SRAM Density Density

at Same Power

10~15% 25~30% ~1.7x ~1.2X ~1.1x

Scaling variance increases each generation.
* SRAM scaling essentially ends at 3nm

. * Analog scaling essentially ends at 5nm

NAND Bit Density

* The transition from 2D NAND to 3D
is enabling the continuation in bit
density scaling by using the third
dimension.

* Bit density is the number of
gigabits of memory on the die
divided by the die size.

* Multiple points for the same
company in the same year
represent MLC/TLC/QLC/PLC/HLC.
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ARM A78 Sub-Block Speed/Power

- with TSMC High Performance Library and Solutions
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3D Integration Technologies (Tsmc, Hot Chips 33)

Inter-chip Interconnect Scaling Roadmap
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TSMC-SolC™

Lite-10 (TSMC)

25
Tbps/mm*2

0.02~0.04 pJ/bit

2~4 Gbps

(1g/pd) Kouaioyyg ABiaug 309uu021a)U]

Hot Chips 33

Thermal Management & Power Delivery are
Primary Concerns for 3D Integration. (Power
Density vs. Power Efficiency Trade-offO

" Integrated Si Micro-Cooler (ISMC) for Ultra-HPC

® Thin SiOx bonding interface (OX TIM) by fusion bonding Si lid al
® | ow interface TR, even though Kgo, at low single digit W/m-K
Si Lid with OX TIM

Cu Lid with LMT (Liquid Metal TIM)

Cu Lid

Si Lid with LMT (Liquid Metal TIM)
bwc (Dlrect Water Cooling)
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EhuCle

Universal Chiplet

Interconnect Express

® InFO_SoW
(System-on-Wafer)

Mimic power
module

Connector
InFO wafer

Mimic thermal
module
(Cold Plate)

R

HBI (Cadence, Synopsys), LIPIN

1.15~2 1.15~2
Tbps/mm Tbps/mm
0.2~0.5 pJ/bit

Characteristics / KPls Standard Advanced Comments
Package Package

Characteristics
Data Rate (GT/s)

4,8,12,16, 24, 32

Width (each cluster) 16 64
Bump Pitch (um) 100-130 25-55
Channel Reach (mm) <= 25 <=
Target for Key Metrics
B/W Shoreline (GB/s/mm) 28-224 165-1317
B/W Density (GB/s/mm?) 22-125 188-1350
Power Efficiency target 0.5 0.25
(p)/b)
Low-power entry/exit 0.5ns <=16G, 0.5-1ns >=24G
Latency (Tx + Rx) < 2ns
Reliability (FIT) 0 < FIT (Failure In Time) << 1
Sideband Data Cluster
Sideband FW-CLK x64 Valid
(x4) Track
Standard Package
Sideband Data Cluster

Lower speeds must be supported -interop (e.g., 4, 8, 12 for 12G device)

Width degradation in Standard, spare lanes in Advanced

Interoperate across bump pitches in each package type across nodes

Conservatively estimated: AP: 45u for AP; Standard: 110u;
Proportionate to data rate (4G — 32G)

Power savings estimated at >= 85%
Includes D2D Adapter and PHY (FDI to bump and back)
FIT: #failures in a billion hours (expecting ~1E-10) w/ CXi Flit Mode

Sideband ) Valid
I (x4) FW-CLK leﬁ ITI‘aCk

Die-1 Die -2
x16 |<->| x16 | CL-0x16 |<-->| CL-0x16
~ PN ~

32 . 32 CL-0x16 CL-0x16
CL-1x16 |<-->| CL-1x16
CL-0x16 | <-->| CL-0x16
CL-1x16 |<-->] CL-1x16

x64 <--> x64
CL-2x16 |<->]| CL-2x16
CL-3x16 |<-->] CL-3x16

(1, 2, or 4 Clusters can be combined in one UCle Link)
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Photonics (Tsmc, Hot Chips 33)

Optical Interface (1/2): Overview

Light can be coupled either vertically (GC) or horizontally (EC):

® GC, as a surface coupler, requires cleanliness and integrity of the optical path from

grating surface all the way to the fiber core.

@ For EC, care must be taken to prevent the expanded optical mode from overlapping with

the bulk silicon underneath SSC.

Optical Fiber
Components .
si ’_l Fiber PD MCD
BOX GC ¢ Si
PIC =
Si

PIC is based on SOl wafer (A) Optical Components

Gc LEE ssC EC
Si aaas Si FE
BOX BOX [-facet
S Si Lmderv:.l.rt
(B) Grating Coupler (C) Edge Coupler

Optical Interface (2/2): GC and EC with COUPE

® GC is designed with optical path intrinsically sealed with dielectrics all the way to

the fiber attachment unit, achieving IL (1D apodized GC) -1.03dB @1310nm for TE
® EC avoids optical loss due to beam overlapped with underneath Si, achieving IL -

0.6dB @1310nm for TE&TM modes

® With COUPE, GC and EC can built with essentially the same structure.

‘ 0.2 e

] g
1.26 1.28 1.3 1.32
‘Wavelength (um)

Insertion Loss (dB)

-20
1260 1274 1288 1303 1318 1333 1349

Wavelength (nm)

1.34

g (dB)

——1M (dB)
- PDL (dB)

1.36

1.38

Grating Coupler Insertion Loss

Edge Coupler Insertion Loss

Electrical Interface (1/2)- Parasitics and PDN Impedance‘%

DARPA PIPES (Columbia-AlM)

| CompletedPhasel |  Phase2 ||
E[C'IP.IC bies ] Integrated link
1Tops/link 2 port demonstration
SE I pmt(::t:;::oﬁi':l:hmp performance traceable
demonstration to scaled system
Energy per bit 0.5 plfbit 0.2 pJ/bit
Areal bandwidth density 5 Tbps/mm? 5 Tbps/mm?
~ Comb bandwidth >0.5mW  45nm; 80nm >0.1mW
. 2Tps 10 Tbps
I =1
Power Penalty 16 dB
; Link latency 40 ns + TOF 100 ns + TOF
Link reach (between { meters 10 meters
packages)
Bit error ratio (BER) 10+ 10
Benchtop MCM
Hardware delivered prototype, components 2 demo units
demo
Operating temperature range Room temperature eyl teg‘éﬁ:rature e

® COUPE has low parasitics at EIC-PIC Electrical Interface, 85% lower

capacitance compared with uBump

® 51% reduction in PDN impedance comparing with uBump w/ TSV; and
92% reduction of uBump w/ wire-bonding.

SE1

A pbump  ATTTTTTTTTTTTYTTT
m g wi/ wire-bonding
= 1E14
s ----—----——---——---—---/-}*/ _ s
2 _— c = —
3 A pbump p pbump 51%
E 3D-stacked e wi TSV  wad--------
g 85% g
° a COUPE
L £
: -_—
w
il
o
a courE @28GHz 1E-1—
| T
0 1x 2x 3x 4x Sx 1E8 1E9 110

Pitch (um) Freq. (GHz)

Hot Chips 33

SE10
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NVidia Grace-Hopper SuperPod

Example Recommender

SCALE-UP WITH NVLINK NETWORK ., With 1478 Embedding Tables

New g
DGX A100 256 Pod DGX H100 256 Pod , NVLink T ax
e e Switch E
LI [ | [ ][] BHOR spine switches S
< | S £
| ] [ ] ..IBHORleaf switches.. | 5 >
I—
= . - Ox A100 H100 H100
\ || 2 |... 32 nodes (256 GPUS) ... | \ IB IB NVLink

/

Moving compute to data
Dense Bisection Reduce Dense Bisection Reduce

PFLOP/s [GB/s] [GB/s] PFLOP/s [GB/s] [GB/s] Bisection Reduce has big payoff at scale !
1DGX / 8 GPUs : 2,400 150 3,600 450 :
32DGXs/256GPUs | 80 | 6,400 | 100 | 512 (57,600 450 2.5x

/ JAnvioia

The need for integrated Si Photonics is growing !

: arm

A100 SuperPod H100 SuperPod Speedup




3D Co-Design Study Roadmap

Features

Challenges

10

CPU cores

3D mesh

N

Multi-mesh
“gateways”

64 SME

Spatial Chiplet
Compute

Chiplet

3D SLC Exp
Chiplet

64c CPU
Chiplet

Chiplet

CPU layer: higher core density
SYS: mesh, SLC and mem/10

CPU: higher core density
Local: cluster cache and mesh
SYS: global mesh, SLC and mem/I10

* CPU with large 3D L2 Data SRAM
* CPUs with SMEs

* Multi 3D mesh system

* Face-to-face bonding

* Back-side power delivery

* CPU and SME in 3D

* Spatial data orchestration engines
* Multi-layer SLC

* Multi 3D mesh system

* Integrated IVR for power/thermal
mgmt.

* Cryo thermal solution

System partitioning and exploration
Power delivery thermals

System partitioning and exploration
3D timing for CMN components
Power delivery/thermals+

* NoC topology and adaptive routing
* System partitioning and exploration
¢ 3D timing for CPU-L2 interface

* System challenges: back-side PDN

* Power delivery/thermals++

* 3D timing for HNF-SLC interface

* 3D timing for CPU-SME interface

» Software for general use of acceleration
and data orchestration

* Power delivery/thermals++++

arm




2.5D + 3D Scaling Opportunities fevTecnoony:
Heterogenous 3D SoC 10 Chiplet

248 566 248 566
USR SR

S L LLEE LT T

o e

Wafer Fanout Package

<+— 30mm ——»

z__ £

Edge (64 cores ~100W)
One 3D SoC
32GB HBM3 stack

D E— 55mm —_—

HPC (1024 cores ~2KW)
4x4 3D SoC
512GB in 16x HBM3 stacks

Data Center (256 cores ~500W)
2x2 3D SoC
256GB in 8x HBM3 stacks

11 arm




Co-Design:
3D Physical Design
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3D design challenges

* System
Partitioning
« Node, tier
assignment,
partitioning and
3D floorplanning

* Power Delivery &
Management

- Power allocation
and distribution,
voltage droop

2D - “Large SoC” 3D - “Stacked SoC”

Current=1

Bumps = 1 Bumps = 1/N management

Current/Bump =1 Current/Bump =N

Current=1

13

* Timing for
synchronous 3D

- Inter-tier skew
and clock design
strategies for 3D

* Thermal
Management

- Thermal sensing
capability, and tier
placement

arm



Partitioning: 3D system design case-study

coherent mesh 32-core compute die
interconnect

e 32-core system
 High-performance Arm cores ‘\

N-layer 3D

- System-level caches (SLC) NP —
- Cache-coherent mesh interconnect snoop filter+ _
o ] SLC tags HIES
* Limited space in 2D |
« More compute or more memory? memory die {can be multiple) —_
* 3D integration o
- Decouples increasing number of cores
. DieN
from cache c.apaC|ty o SLC data arraye
- Allows adding SLC expansion tiers (8 MB per core
per tier)
2D System 3D System

y arm



3D timing: Inter-tier skew

* Process variation across tier
- Leads to inter-tier skew on uncommon clock
tree path

* Connect at root
- Small #3D connections but large uncommon
path => Large inter-tier skew

e Connect near leaf
- Large #3D connections but small
uncommon path => Small inter-tier skew

15

o pe
o ® o ®
Tier-0 Tier-1 Tier-0 M"I;fer-l
Clock Tree Clock Tree Clock Tree Clock Tree

1 Clk, inter-tier skew high

Thousands of Clk for very low inter-tier skew

' Example: Acceptable inter-tier skew \N

1 10 100 1000 10000

Inter-layer clock skew (a.u.)

Number of 3D Clock Connections

arm



Thermal Solution Landscape

Remote Cooling Intra-Lid/Package Embedded
(State-of-the-Art) Cooling Cooling
Air- Cooled Heat Sink Vapor-Cha mber-Embedded Intra-Lid Vapor Chamber 5 Immersion
Low-Profile Heat Sink .~ with Heat Sink Cooling

Intra-/Inter-Chip
Microfluidic Cooling

_ Remote Cooling Intra-lid / Package Cooling | Embedded Cooling

Cooling efficiency Medium High
Cost Low Medium High

¢ arm



3D thermal design
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AT =Typ - Ty (C)

12

I I T

L2 dhrystone | 105 1
10 LIENSN] maxpower 9.4
8
6 57 5.5

4.8

4 4.2

[ 3.1 3.2
2
0

Dual CPU, Dual CPU, Dual CPU, Dual CPU,

Logic-over-Mem Logic-over-Mem Mem-over-Logic Mem-over-Logic

F2F,

F2B,

F2F,

F2B,

3D Bottom Die

Logic-over-mem

3D Top Die

Mem-over-Logic

© =2 N W s OO N ®

I Core Die
1 Cache Die

* Power density increasing as area continues to scale down with newer technology

* Temperature rise is proportional to the power density of the design
* Higher power die near the heat sink is preferred for lower temperature rise

R. Mathur et al., ECTC’20
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3D power delivery and management

compute die FEOL—] |

compute die BEOL—
| LAICATATEp T O 8 8 8 8 8
SLC die1 FEOL_D]H]]]]I]]]]]I“]I]H]]]]]][HE‘TSVS 1x1 ox2 33
SLC die1 BEBI:— ca bumps (a) Various cluster sizes (pitchis/rmito<ale}
BGA Various cluster sizes (Pitch is not to scale)
® ) N
Tum 2um 5um
(b) Various TSV diameters

TSV configurations

Recs LPc5  Rpea Rexe LPKG  Ros Reoy TSV aspeaaio_us TSV Diameters 10:1
TSV cluster size options Ix1, 2x2, or 3x3

VDD TSV diameter (um) 5 2 1
Co L Core L TSV length (um?) 50 20 10

vssT nee Pee TSV min. pitch (um) 10 7.5 2

2

L L 2x2 cluster KoZ (um-<) 400 132.25 16
Recs 28 | Reca Rexg 77KS normalized TSV R 1.00 2.50 5.00
normalized TSV L 1.00 0.40 0.20
normalized TSV C 1.00 0.40 0.20

Crsv

L. Zhu et al., ISLPED’21

18
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3D power delivery and management

e TSV pitch and parasitics have
significant impact on voltage drop

* Decreasing power TSV pitch
- Decreases voltage drop
- Increases area overhead

e Trade off the voltage drop and area
overhead for power delivery TSVs

L. Zhu et al., ISLPED’21

19

30%

25% -46%
-63% area
\overhead

%)

=]

=
]

5%

worst-case voltage drop (% of VDD)

_— |

0% 1 - I . | I'=|=,_-.|_-,_—|_
30 40 50 60 70 80

TSV cluster pitch (um)

- 40%

\ | balanced TSV |
\ Cluster pitch range
for 2um TSVs - 30%

L/
z/ |

- 10%

- Ll

0%

1
30

T 4 d ! L
40 50 60 70 80
TSV cluster pitch (um)

1x1 drop = = 1x1 area
2x2 drop — — 2x2 area
3x3drop = = 3x3 area

——5umdrop = = 5um area
~———=2umdrop = — 2um area
———1ymdrop = = 1um area

(a) fixed TSV diameter = 2um

(b) fixed cluster size = 2x2

arm

TSV KoZ area (% of die footprint area)



Co-Design:
3D Network on Chip
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21

Expanding NoC to 3D layers

-- Lower Manhattan distance between endpoints -> Lower data access latency

-- Higher bi-section bandwidth

-- Research topics

1)
2)
3)
4)
5)
6)

Topology and system partitioning exploration
Explore adaptive routing algorithms

QoS management

Cache Coherence Scaling

SLC optimizations

Support for Multicast and Collectives

Multi-layer 3D mesh with 4x4x4 XPs

arm



2D vs 3D tiles : latency and bandwidth
10x10 mesh / 128 cores / 4xHBM?2 stack

-— 10% — 30% faster accesses with 3D tiles e Bandwidth

2.5

1 o/ 0,
w& improvement '30/) 32%
, improvement .
improvement
m 2D tile \ /
3D tile
. 2 85%
improvement

o
©

o
0o
N

o o

[e)} ~
[E
ul

©
o
=

o
Memory bandwidth (norm)

Total access latency (norm)
o
(6]
o
&

o
[N}

o
[EE

0 Read stream Read stream Read stream
Read stream Write stream 1x data channel 2x data channel 1x data channel
2D mesh 2D mesh 3D mesh

* Future-proof NoC need to provision for even more BW (e.g. >4TB/s for HBM3)

* Bandwidth improves by adding more data channels and bisection BW ?
- Not scalable with a 2D mesh
= - 3D mesh naturally increase channel availability (see notes for this slide for details) arm
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Topology and system partitioning exploration

Explore tradeoffs of different endpoint distribution for cores, SLC, HBM,
accelerators and 1O

Explore mesh topologies (e.g. regular/irregular meshes, hypercubes, fat trees)
Potential for novel cache hierarchy options with 3D integration and 3D NoC

DSE example: 3 Layers
- Top: Cores
- Middle: Local HNFs (LH) and mesh
- Bottom: Global HNFs (GH) + mesh

Some more DSE points
- Mesh on core layer ?
 CHI channels per layer
« Num of Z-dim connections vs TSV placement constraints

arm



Co-Design:
Data Centric Accelerators
&

DSL Compiler / Runtimes
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Current systems are optimized for regular computations

Regular / Dense Irregular / Sparse
(e.g., dense linear algebra) (e.g., sparse linear algebra)
0 1 offsets| 0 [3 | 4 | 5 Example:
o CSR
9] ARG format
2

0.3 1.4 0.7 2.5

——

compressed fibers

x I
Vector processing, GPUs

Prefetchers ‘/ % Result: Percentage of peak
utilization in supercomputers

Memory optimized for bulk transfers
(Lack of) HW synchronization Dense linear algebra 50-80%

. _10
Tiling, polyhedral model ‘/ Sparse linear algebra 1-3%
X

Compiler-supported parallelization Graph analytics <<1%

Similar inefficiencies in

Language-level support -
(code and data abstractions) J X accelerators (e.g., no/llml’rez‘:l
support for sparse deep learning)

Must rethink full system stack to support irregular computations efficiently

. Wk arm
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Update Batching (UB)

Maximizes spatial locality of memory transfers using two-phase execution

26

Binning phase: Logs updates to memory, dividing them into cache-fitting

slices (bins) of vertices

Accumulation phase: Reads and applies logged updates bin-by-bin

Source
Vertices

Destination

Ids

11

1. Binning Phase

9

wll|lO||lOC

(|| ||,

12

- (OO0 |m| >

11

e 112

«— 2. Accumulation Phase

) )
) =) | :‘:i:t(;::

slice

ik arm
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SpZip

Main Memory

Priv Cache Priv Cache
3 IR
kFetcher][Compressor] tFetcher][Compressor]

Ell ﬁ |E|I i' Ell ﬁ Ell i'

-~ SpZip fetcher accelerates data structure traversal and decompression

-- SpZip compressor compresses newly generated data before storing it off-chip

-- Fetcher and compressor execute a configurable dataflow graph of logical operators

- Handle multiple/complex data structures by composing simple operators
« Provide general support for graphs and sparse tensors (but trees, hash tables would require more operators)
- Can be used in the context of a CPU or a specialized architecture

. Wk arm
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Memory Traffic Reduction

Adjacency Source Destination

S Matrix " Vertex | Vertex B Updates

o8
F=a 1.00-
58075~
sTos0-
: ©025-
= 5 0.00

c

-- UB+SpZip reduces memory traffic
- 3.3x without preprocessing

-- - 1.8x with preprocessing

SP

avg

with DFS preprocessing

: Wk arm
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Tensor Algebra Compiler

(http://tensor-compiler.org/)

A Domain Specific Language, Compiler and Runtime

THE TENSOR ALGEBRA COMPILER (TACO)

Expressions

A
a

= Raising the level of abstraction to enhance programmer productivity

Sparse tensors are the dominant form of tensor
Other Prominent DSL's: MLIR, Halide, GraphlT, TVM

TENSORS ARE EVERYWHERE

Data Analytics Machine Learning

— )& Ly
T /N ‘:( Sparse Convolutional Networks

Sparse Networks

O PyTorch

Product Reviews 1[

TensorFlow

Social Networks Graph Convolutional Network

£

$ i, O
Grogy

Peter

Lilly

Paul

Billy

Hilde

Bob

Sam

Amazon
Product
Reviews

Customers

Mary

O a°&°¢f’
‘po\#e ev &ga“* e @

Generates optimized parallel distributed sparse tensor linear algebra code

orm

a = Be

A=B+C a=aBc+ba
aB A=0 A=BC

A=B0o(CD)
B a=B"Be

nats

Dense Matrix CSR BCSR

DCSR
coo ELLPACK ~gp

DIA

Blocked DIA
Sparse vector

Blocked COO csc

DESC
Hash Maps
Dense Tensors

Blocked Tensors

Science and Engineering

Robotics  #.

;
»9

Computational Biology

Extremely sparse
Dense storage: 107 Exabytes
Sparse storage: 13 Gigabytes

Images from the

Tensor Algebra Compiler

(taco)

Nvi

DARPA
dia Symphony DSA

THE

PROGRAMMING
LANGUAGE

Legion/MPI

SDH

Supports all widely used sparse tensor formats

I
J

Dense array
J Dense

Sparse vector

Compressed

J Hashed

Dense array
Dense Compressed (-

(a) Vector storage formats

Dense

Compressed

Dense [ \ Slng\eton Gompressed Compressed
BCsR
o Dense o Dense
Dense Dense Jouer Compressed Jotar Dense
Dense | Range lnor Dense limner Compressed (-0,-U)
Singleton J Offset Yo Dense Jinner Singleton (-0)
(b) Matrix storage formats
I Compressed (-U) I Compressed 1 Compressed (-U)
J Singleton (-U) J Compressed J Singleton
K Singleton K Compressed K Dense

(c) 3rd-order tensor storage formats

Stanford

University

@gg’ll arm
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http://tensor-compiler.org/

Initial Characterization of ECP Applications

Common Kernels mapped to APlIs:

Sparse Tensor

Graphs

Dense Stencils/Tensors

Multigrid

30

- TACO

= Graphlt

- Halide/Tiramisu
- Cola

App Kernel Time | Kernel Type Parallelism Sparse/Dense Primary API | Limiting factor

AMG2013 72% CSR SpMV sparse TACO Memory Bandwidth

ExaMiniMD 76% Euclid Distance sparse/graph Graphit Not vectorized, poor branch prediction
Laghos 50% Tensor contractions sparse/graph TACO CPU vector unit, MPI comm

miniAMR 88% 7-pt stencil dense with multigrid CoLa L3 latency bound, unnecessary indirection
miniQMC 78% Spline interpolation, DGEMM dense Halide/Tiramisu | DRAM bandwidth bound, FMA bound
miniVite 7? 7? sparse/graph Graphlt Memory latency, serial sections, mallocs
nekbone 70% DGEMM, daxpy dense Halide/Tiramisu | Memory Bandwidth

PICSARLite 7? dense stencil dense Halide/Tiramisu | Thread spawninig

SWidlite 90% dense stencil dense Halide/Tiramisu | CPU bound needs better vectorization!
SWFFT 90% copying/MPI dense Halide/Tiramisu | Memory Bandwidth, Network Bandwidth
FFTW 95% butterflies regular but sparse | Halide/Tiramisu | Memory Bandwidth

XSBench 95% particle lookup/update sparse/hash Graphit Memory Latency

Key Limiting Software Factors:
e serial sections, thread overhead, poor vectorization
Key Limiting Hardware Factors:

* CPU vector unit

* Branch Prediction

e Memory Bandwidth & Memory Latency
* Network Communication

arm
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