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Deep Neural Network (DNN) Design Accelerator Design

DNN Model

i Deploy the model to the device
¥ i
{1
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Deep Neural Network (DNN) Design

/° An automatic neural architecture search (NAS) \
methodology - a.k.a. AutoML

* Boosts the quality and accuracy of machine
learning algorithms

Y ) S Ty
\ Normal Cell Reduction Cell )

Zoph, Barret, et at. "Learning transferable architectures
for scalable image recognition." CVPR 2018

Georgla &

Accelerator Design

network implementations

e OnFPGA: customized DNN accelerators

/° On GPU/TPU/NPU: optimized (tuned) neural \

HIFQ,

Programmable

Controller
o

off-chip
data

transfer
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N

Chen Zhang, et al. "Optimizing fpga-based accelerator

design for deep convolutional neural networks”, FPGA 2015
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Deep Neural Network (DNN) Design Accelerator Design
/° An automatic neural architecture search (NAS) \ /° On GPU/TPU/NPU: optimized (tuned) neural \
methodology — a.k.a. AutoML network implementations
* Boosts the quality and accuracy gf machine * OnFPGA: cystomized DNN accelerators
learning algorithms
Set0 |
E AIFQ
off-chip
data
------ transfer
mgr
\ Normal Cell Reduction Cell /
Zoph, Barret, et at. "Learning transferable architectures Chen Zhang, et al. "Optimizing fpga-based accelerator
for scalable image recognition." CVPR 2018 design for deep convolutional neural networks”, FPGA 2015
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Deep Neural Network (DNN) Design Accelerator Design

Accelerator Design

Level o

Pure NAS
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Neural Architecture Search (NAS) Accelerator Design
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Hardware-aware NAS
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Neural Architecture Search (NAS) Accelerator Design
hevelo (T 3g8n— R — 8- ~
Pure NAS
T Searched
wit cost Accelerator g DNN

Level1 (O s~ 50— 308 [ Evaluation B -

Hardware-aware NAS

Searched

DNN and Accelerator Co-Design DNN Accelerat
+ - ccelerator .
Level2 () 06 By Accelerator [ TICRINTEN]:

True DNN and Accelerator Co-Design
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Deep Neural Network (DNN) Design Accelerator Design
Searched :
NAS with HW cost Accelerator s DNN Accelerator Design

LEVEll @ m—»m—»m Evaluation E

Hardware-aware NAS

Searched

DNN and Accelerator Co-Design DNN Accelerat
+ - ccelerator .
Level2 (O 06 By Accelerator [ TICRINTEN]:

True DNN and Accelerator Co-Design
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Deep Neural Network (DNN) Design Accelerator Design

e Fixed Accelerator

- ¥ Searched :
NAS with HW cost Accelerator s DNN Accelerator Design

LEVEll @ m—»m—»m Evaluation E

Hardware-aware NAS

QAcceIerator design can also change

v
DNN and Accelerator Co-Design Sg’:;hed Accelerat
() + ccelerator
Level2 e Jokeo Accelerator [ TICRINTEN]: ()

True DNN and Accelerator Co-Design

& Callie Hao | Sharc-lab @ Georgia Institute of Technology 13



Georgla &

QAcceIerator design can also change

/]
Searched
DNN + R Accelerator .
Accelerator Fine-tune i I}

True DNN and Accelerator Co-Design
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Software: Neural Architecture Search (NAS)

Hardware: Implementation Search

/
,’ QAcceIerator design can also change
\ i Searched
DNN and Accelerator Co-Design f)al\::\l € R
+ - ccelerator
Level 2 (O e Jolex IVHEELA  Fine-tunei ()

True DNN and Accelerator Co-Design
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Software: [Veural JrchitectureSlearch (NAS)

Hardware: |]mp|ementat|on Bearch

L NAIS JT

/
,’ QAcceIerator design can also change
\ i Searched
DNN and Accelerator Co-Design f)al\::\l € R
+ - ccelerator
Level 2 (O e Jolex IVHEELA  Fine-tunei ()

True DNN and Accelerator Co-Design
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* Simultaneous NAS and Implementation search

%8> DNN2a “%» DNN2 | .. (%% DNNn

Solution Pair 1 Solution Pair 2 Solution Pair 3
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* Simultaneous NAS and Implementation search

%8> DNN2a “%» DNN2 | .. (%% DNNn

Solution Pair1 Solution Pair 2 Solution Pair 3
“One-click AI" Q “Good Al”
* Automated Al algorithm * Bridge the gap between SW/HW
development and deployment for higher quality solutions
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Software: Hardware:
Neural Architecture Implementation Search
Search Space Space
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Software: Hardware:
Neural Architecture Implementation Search
Search Space Space

Method 1: find something
in the middle and connect
to both SW and HW

FPGA/DNN Co-Design
[DAC'19, SysML'20]
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Software: Hardware:
Neural Architecture Implementation Search
Search Space Space

Method 1: find something
in the middle and connect
to both SW and HW

FPGA/DNN Co-Design
[DAC'19, SysML'20]

Method 2: merge the
two spaces - formulate
both in one equation

A True NAIS work
EDD [ICCAD'19, DAC'20]
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Software: Hardware:
Neural Architecture Implementation Search
Search Space Space

Method 1: find something
in the middle and connect
to both SW and HW

FPGA/DNN Co-Design
[DAC'19, SysML'20]

Hao, Cong, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-mei Hwu, and
Deming Chen. "FPGA/DNN co-design: An efficient design methodology for loT intelligence on the
edge." ACM/IEEE DAC, 2019. (seems to be most cited in DAC 2019)
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KDN Ns are usually built by repeated oﬁ ﬁ Accelerators (FPGA) \
similar basic blocks
Activation function Activation function
A f(x)
I

Sfx) fix) —x
r-r—-----TTr—-——"-==="-=—= r-Hr—--—--—-=-=-TI--=-=-==-==
| |
: Weight layer : : Weight layer :
: 1 i : 1 i
| | Activation function | | | | Activation function | |
! t ! f |
! Weight layer : ! Weight layer :
o ____ r ______ ] o ____ Y __ ]

NS /

https://d2l.ai/chapter_convolutional-modern/resnet.html
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K DNNs are usually built by repeated oﬁ ﬁ Accelerators (FPGA) are usually \

similar basic blocks built by Processing Elements (PE)
Activation function Activation function
A f(X) )
‘ Convolution “

f(x) Sx) —x ix1
N S | ——— L
: Weight layer ! I Weight layer I .
| 3 ! | 7 : Depth-wise )
[ , I | C luti Convolution
! | Activation function | | ! | Activation function | | onvolution 3x3
| 7 : I ) | 3X3
I I !
: Weight layer : : Weight layer :
o __ r ______ ] o __ | ]

AN

https://d2l.ai/chapter_convolutional-modern/resnet.html
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5|m|Ia('5a5|c blocks R bU|I(5y Processing Elements (PE)

--———— --_-——---——_——

PE implements basic blocks
—“something in the middle” we are looking for

A |
Weight layer :

[} I

I

tivation function |

|

A
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Basic Building Block
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Hardware
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Sof v [ Conv 3x3 ]
ortware st Basic Block
DW-Con
DNN 2"d Basic Block [ - ]
v [ Conv 1x1 ]
37 Basic Block
| Activation ]

!

Output

Conv 3x

DW-Conv 3x

Conv 1xa

Activation

Hardware
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lnput |
Sof v [ Conv 3x3 ]
ortware st Basic Block
DW-Conv 3x
DNN 2"d Basic Block [ > ]
v [ Conv 1x1 ]
37 Basic Block
| | Activation ]
C
oY 3X Output
DW-Conv 3x T Implements

Conv 1xa

Convolution
1X1

Activation

Depth-wise Convolution
Convolution 3x3 3Xx3

Hardware
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DNN

/& How to choose these basic building
blocks from a large design space?

Hardware
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Target ML task; FPGA device (resources); performance targets (QoS)

Auto-DNN: Co-Search Engine

Step 1. Basic building block modeling

A 4

Step 2. Building block selection Auto-HLS:

FPGA Accelerator
Generator

A

Step 3. DNN search and update

Software: DNN Model ) Hardware: FPGA Accelerator
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Input feature maps:  |P outputs
8x8 tiling

...........................

..........................

Load data

CONV3x3 -~ 1
CONVaxa -
Pooling -
Writeback -
Accelerator template

Auto-HLS:

FPGA Accelerator
Generator

Hardware: FPGA Accelerator
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Auto-DNN: Co-Search Engine

Step 1. Basic building block modeling

A 4

Step 2. Building block selection

A

Step 3. DNN search and update

_Software: DNN Model ) )
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Auto-DNN: Co-Search Engine

Step 1. Basic building block modeling

A 4

Step 2. Building block selection

A

Step 3. DNN search and update

Job interview...

CV screening

Phone Interview

Onsite Interview
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Auto-DNN: Co-Search Engine

To provide performance

estimation of a DNN
[

Step 2. Building block selection ReShuna; = ZRes}‘ +I7
Pj
O(Data
Y Latyyna; = a; Z Comp; + B le )

Step 3. DNN search and update

Respyy = Ilzvesbundi + V- Res.y

LatDNN = Z Latbund + ¢ . LatDM
i=1

((Softwarei NN Model) )
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Auto-DNN: Co-Search Engine

Step 1. Basic building block modeling

Only Keep promising ones to
reduces design space

Step 3. DNN search and update

_Software: DNN Model ) )
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Accuracy (loU)

0.54

0.53

0.52

0.51

Building Blocks

© 0O

25
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Auto-DNN: Co-Search Engine

Step 1. Basic building block modeling

A 4

Step 2. Building block selection

Perturb, train, and select DNNs
within performance constraint

_Software: DNN Model ) )
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* Design Automation Conference System
Design Contest (DAC-SDC)
o Object detection on FPGA/GPU

LAS VEGAS, NV +JUNE 2 - 6,2019 + DAC.COM

Get Ready To Participate! %\"“ %\;‘B‘?W
/ \9

COMPLIMENTARY REGISTRATION ?\ \
TOWARDS GRAND CASH PRIZE! ?

« OurAchievements E S
o 2018:Third place @ FPGA (3 out of 51)
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* Design Automation Conference System
Design Contest (DAC-SDC)
o Object detection on FPGA/GPU

LAS VEGAS, NV +JUNE 2 - 6,2019 - DAC.COM

Get Ready To Participate! %‘%‘“ﬁ%\?’%

COMPLIMENTARY REGISTRATION =i\ =

. TOWARDS GRAND CASH PRIZE! =, =

* OurAchievements e —

o 2018:Third place @ FPGA (3 out of 51)
Independently designed DNN and

FPGA accelerator — a lot of iterations!

; r""':‘E
2, / ;’/r'—-‘ ‘1‘ - A |
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* Design Automation Conference System

Design Contest (DAC_S DC) ‘ LAS VEGAS, NV *JUNE 2 -6,2019 - DAC.COM
o Object detection on FPGA/GPU . 56 -
J / Get Ready To Participate! %:\‘\ ;}3}—«‘3
i T e (N
e OurAchievements =

o 2018:Third place @ FPGA (3 out of 51)
Independently designed DNN and

FPGA accelerator — a lot of iterations!

o 2019: Double championship @ FPGA
and GPU (2 out of 58, 1 out of 56)
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* Design Automation Conference System

Design Contest (DAC-S DC) ‘ LAS VEGAS, NV + JUNE 2 - 6,2019 + DAC.COM
o Object detection on FPGA/GPU 56 ——
.J / Get Ready To Participate! %\"‘?@?g
COMPLIMENTARY REGISTRATION == ?\‘\\\\t 1\%
. TOWARDS GRAND CASH PRIZE! = =
* OurAchievements e

o 2018:Third place @ FPGA (3 out of 51)
Independently designed DNN and

FPGA accelerator — a lot of iterations!

o 2019: Double championship @ FPGA
and GPU (2 out of 58, 1 out of 56)

NAIS co-design leads to victory!
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Media coverage and open-source code

2018: https://github.com/onioncc/iSmartDNN

2019: https://github.com/TomGoo8/SkyNet

@@ |

2020: https://github.com/jgoeders/dac_sdc_2020_designs

Jire=o 210 O ®
Lis Vegas, NV .3 oS0
% :

CERTIFICATE OF APPRECIATION
2019 System Des:;’:wContest - FPGA
1st Place Winner
iL.f:;A }i#v\ 22—

—r

== https://www.ibm.com/blogs/research/2019/06/winning-ai-algorithms-drones/

Georgla &

2068
i -

CERTIFICATE OF APPRECIATION

Frosonted to

2019 System Design Contest — GPU
1st Place Winner
@\ Fladfn 22—

TEE . wiEe.

i wma 5
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Software: Hardware:
Neural Architecture Implementation Search
Search Space Space

Method 1: find something
in the middle and connect
to both SW and HW

FPGA/DNN Co-Design
[DAC'19, SysML'20]
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Software: Hardware:
Neural Architecture Implementation Search
Search Space Space

Li, Yuhong, Cong Hao, Xiaofan Zhang, Xinheng Liu, Yao Chen, Jinjun Xiong, Wen-mei Hwu, and
Deming Chen. "EDD: Efficient differentiable DNN architecture and implementation co-search for
embedded Al solutions." DAC 2020

Method 2: merge the
two spaces - formulate
both in one equation

A True NAIS work
EDD [ICCAD'19, DAC'20]

!
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Software: Hardware:
Neural Architecture Implementation Search
Search Space Space

fA} i3

* Put {A, I} into one formulation, preferably differentiable
* Solve {A, I} using continuous optimization, e.g., Gradient Descent

Method 2: merge the
two spaces - formulate
both in one equation

A True NAIS work
EDD [ICCAD'19, DAC'20]
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Existing
Formulation

Hardware-ware NAS

True co-design

min: L= Accioss(A) - Perfioss(1o)

A is differentiable Implementation I is fixed
with respect to £ (not in the search space)

min: L = Acciyss(A, 1) - Perfipss(I) + B - CRESD=RESup

Ais differentiable Implementation]  Consider resource
with respect to L is also variable constraints
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Existing min: L = Accy,ss(A) - Perfi (1)
Formulation

Hard NAS A is differentiable Implementation I is fixed
araware-ware with respect to £ (not in the search space)

NAIS , )
Formulation min: L = Accioss(A, 1) - Perfipss(1) + B - CRES()=RESyp

True co-design A is differentiable Implementation I Consider resource
with respect to L is also variable constraints

Challenge

How to formulate I as differentiable with respectto £ ?

& Callie Hao | Sharc-lab @ Georgia Institute of Technology 49
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Neural Architecture Search (NAS)

A
’ \
DNN Candidate One candidate
operations of block; operation opl?"
Input; Input;

Conv 1x1

dw-conv kxk

blOCki

Conv 1x1

Output; Output;
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Neural Architecture Search (NAS)

A
’ \
DNN Candidate One candidate
operations of block; operation opl?"
‘ Input; J' Input;
\ y
Discrete solution space Conv 1x1

dw-conv kxk

Conv 1x1

blOCki "
op; B ODi

Output; Output;
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Neural Architecture Search (NAS)

A
| |
DNN Candidate One candidate
operations of block; operation op;" From discrete to continuous
for differentiable:
Inpu . Input; Gumbel-Softmax

* Sampling parameter 0; ,,

Conv 1Xx1
* Operations sampled
dw-conv kxk following Gumbel-Softmax
distribution

Conv 1x1

* 0, ,,is differentiable with
respectto L

Output,- Output;
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NAS Implementation Search

A
A ) [ \

One candidate

= . m
operation op™ Quantization of op;

Input; Input;
p—— TR

Output; Input;
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NAS Implementation Search

A
A ) [ \

One candidate

= . m
operation op™ Quantization of op;

Input; I nput
?;, m,1’ ¢l m, 2 fleQ

——— e g doni

Output; Input;
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NAS
A

One candidate

operation op;"

Input;

Conv 1Xx1

dw-conv kxk

Conv 1Xx1

Output;

Tech
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Implementation Search

A

\

Quantization of op;"

Input

Similar technique:

¢lm1 ¢lm2

Gumbel-Softmax

¢Lm ,Q
IT" : other implementation

- variables

* Perfi(op;") = f(I{")

I nput,-

* Resi(op;") = g(I}")

& Callie Hao | Sharc-lab @ Georgia Institute of Technology 55



Tech

Georgia &

NAS Implementation Search

Q Differentiable Q Differentiable
min: L = Accyyss(A, 1) - Perfipss(I) + B - CRESUD=RESup

Continuous Optimization: gradient descent
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Test Error (%) | GPU Latency | FPGA Latency
Top-1| Top-5| Titan RTX | ZCU102 [22]
Baseline Models
GoogleNet 30.22 | 1047 | 27.75ms 13.25 ms
MobileNet-V2 28.1 9.7 17.87 ms 10.85 ms
ShuffleNet-V2 306 | 117 21.91 ms NA
ResNet18 30.2 | 10.9 9.71 ms 10.15ms
Hardware-aware NAS Models
MNasNet-Al 24.8 1.5 17.94 ms 8.78 ms
FBNet-C 24.9 7.6 22.54 ms 12.21 ms
Proxyless-cpu 24.7 | 7.6 21.34 ms 10.81 ms
Proxyless-Mobile 254 | 7.8 21.23 ms 10.78 ms
Proxyless-gpu 249 | 7.5 15.72 ms 10.79 ms
EDD-Net-1 GPU-oriented DNN
EDD-Net-2 FPGA-oriented DNN

& Callie Hao | Sharc-lab @ Georgia Institute of Technology
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EDD-Net-1: targets GPU

EDD-Net-2: targets recursive FPGA accelerator

3: targets pipelined FPGA accelerator

-Net-

EDD
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Dna: Differentiable network-accelerator co-search
Y Zhang, Y Fu, W Jiang, C Li, H You, M Li... - arXiv preprint arXiv ..., 2020 - arxiv.org

ConCoDE: Hard-constrained Differentiable Co-Exploration Method for Neural
Architectures and Hardware Accelerators
D Hong, K Choi, HY Lee, J Yu, Y Kim, N Park, J Lee - 2021 - openreview.net

Dance: Differentiable accelerator/network co-exploration
K Choi, D Hong, H Yoon, J Yu, Y Kim... - 2021 58th ACM/IEEE ..., 2021 - ieeexplore.ieee.org

DIAN: Differentiable accelerator-network co-search towards maximal dnn
efficiency
Y Zhang, Y Fu, W Jiang, C Li, H You... - 2021 IEEE/ACM ..., 2021 - ieeexplore.ieee.org

Triple-Search: Differentiable Joint-Search of Networks, Precision, and
Accelerators

Y Fu, Y Zhang, H You, Y Lin - 2020 - openreview.net
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- meural rchitectureEearch (NAS)
S

nmplementationEearch
|
NAIS T
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- meural rchitectureEearch (NAS)
+

nmplementationEearch
|
L NAIS _TTJ i
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- meuralrchitectureEearch (NAS) ‘*
7 e
nmplementationEearch

1 Multi-modal Multi-task Models
c» P
Y De - .o
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Softwarey meural rchitectureEearch (NAS)

nmplementationearch

Multi-modal Multi-task Models

Il
«a® aP
NAIS 11 2 |
Heterogeneous Platform
Mapping-aware NAIS
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* Multi-modal: process and 2
relate information from
multiple modalities
o Text, visual, vocal, motion, etc.
Sound Image Motion
o o o -
=y
BT
il =
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Ruder, Sebastian. "An overview of multi-task learning in deep
neural networks." arXiv preprint arXiv:1706.05098 (2017).
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Largely increased complexity
in heterogeneous platforms
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Hao, Cong, and Deming Chen. "Software/Hardware Co-design for Multi-modal Multi-task Learning
in Autonomous Systems." In 2021 IEEE 3rd AICAS, 2021.
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Xinyi, Zhang, Cong Hao, et al., "H2H: Heterogeneous Model to Heterogeneous System
Mapping with Computation and Communication Awareness”To appear at DAC22
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Hao, Cong, and Deming Chen. "Software/Hardware Co-design for Multi-
modal Multi-task Learning in Autonomous Systems." IEEE 3rd AICAS, 2021.

Xinyi, Zhang, Cong Hao, et al., "H2H: Heterogeneous Model to

Heterogeneous System Mapping with Computation and Communication
Awareness”To appear at DAC'22

Li, Yuhong, Cong Hao, et al. "EDD: Efficient differentiable dnn
architecture and implementation co-search for embedded ai
solutions." ACM/IEEE DAC, 2020
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1. Basic: DNN and Accelerator
Co-design —three levels

2. NAIS: simultaneous neuvral
architecture and

implementation co-search /
. Contact:
3. Future: when multi-modal callie.hao@ece.gatech.edu
multi-task (MMMT) models Sharc-lab @ Georgia Tech
meet heterogeneous (https://sharclab.ece.gatech.edu))
platforms ‘
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