

Deep Neural Network and Accelerator Co-Design: Present and Future

Cong (Callie) Hao

Assistant Professor

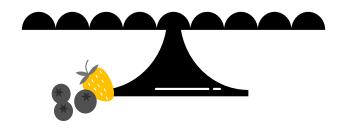
Georgia Institute of Technology

School of Electrical and Computer Engineering

Sharc-lab @ Georgia Tech https://sharclab.ece.gatech.edu/

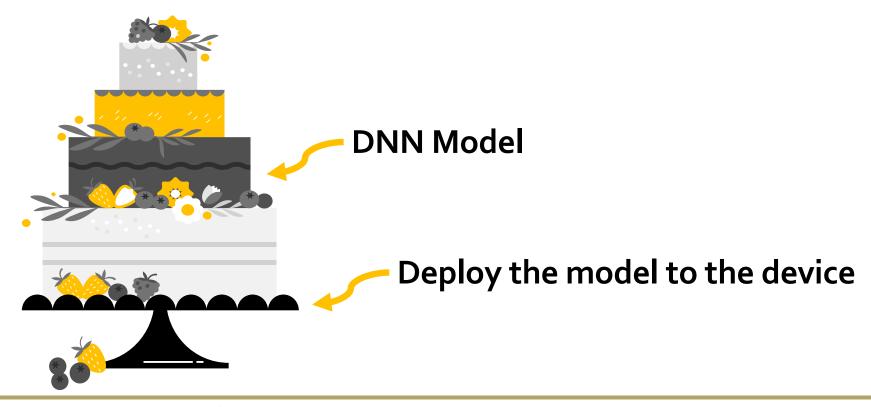
Deep Neural Network (DNN) Design

Accelerator Design



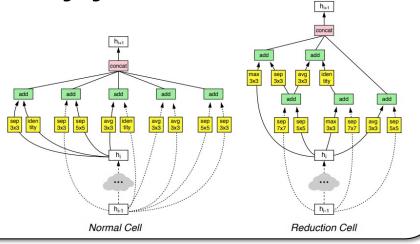
Deep Neural Network (DNN) Design

Accelerator Design



Deep Neural Network (DNN) Design

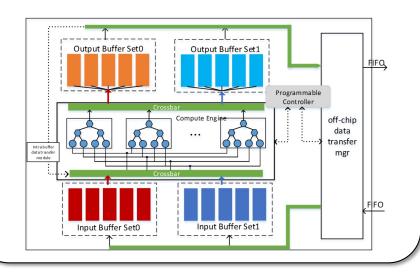
- An automatic <u>neural architecture search</u> (NAS) methodology – a.k.a. AutoML
- Boosts the quality and accuracy of machine learning algorithms



Zoph, Barret, et at. "Learning transferable architectures for scalable image recognition." CVPR 2018

Accelerator Design

- On GPU/TPU/NPU: optimized (tuned) neural network implementations
- On FPGA: customized DNN accelerators

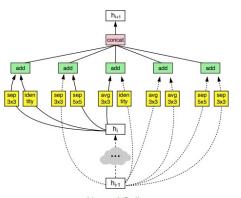


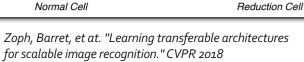
Chen Zhang, et al. "Optimizing fpga-based accelerator design for deep convolutional neural networks", FPGA 2015

Deep Neural Network (DNN) Design

An automatic neural architecture search (NAS) methodology - a.k.a. AutoML

Boosts the quality and accuracy of machine learning algorithms

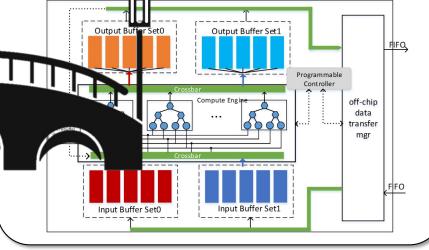




Accelerator Design

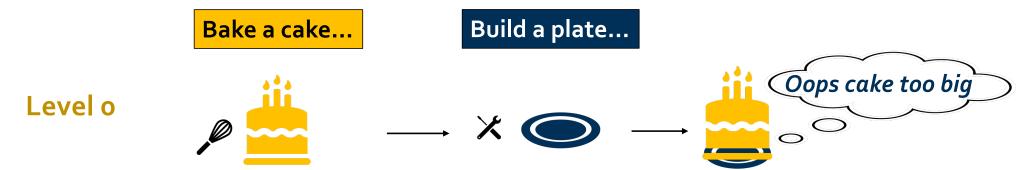
On GPU/TPU/NPU: optimized (tuned) neural network implementations

On FPGA: customized DNN accelerators

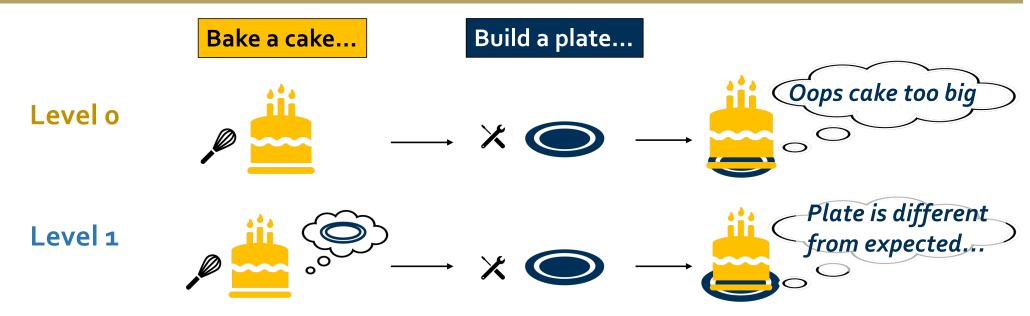


Chen Zhang, et al. "Optimizing fpga-based accelerator design for deep convolutional neural networks", FPGA 2015

Three Levels of Co-Design in Cake Factory...

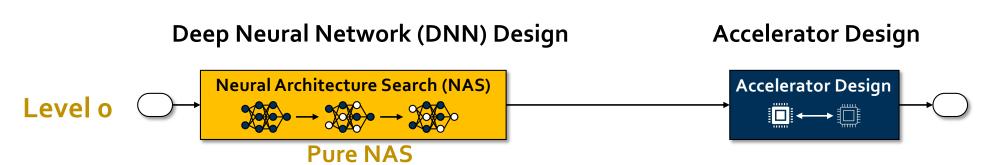


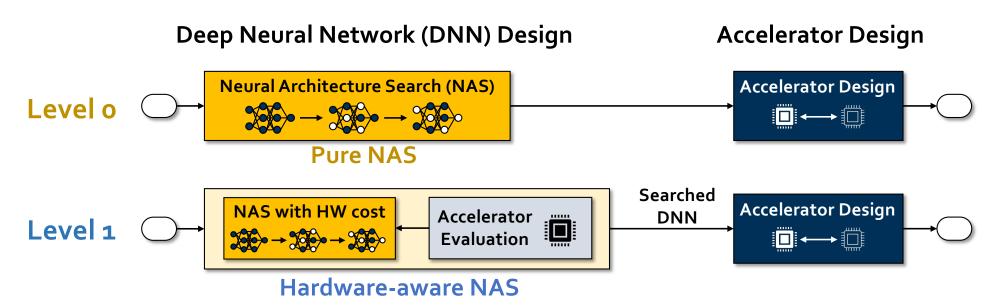
Three Levels of Co-Design in Cake Factory...

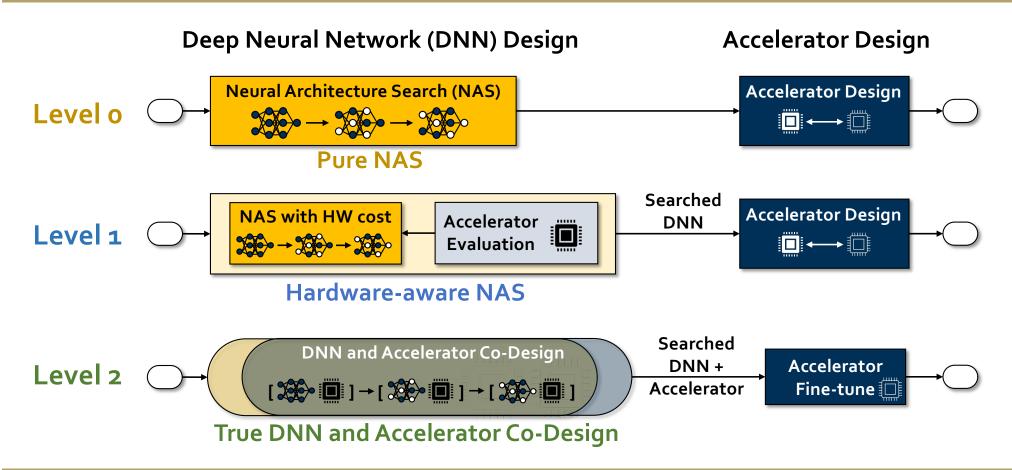


Three Levels of Co-Design in Cake Factory...

Build a plate... Bake a cake... Oops cake too big Level o Plate is different from expected... Level 1 Bake&build in pairs!) Level 2





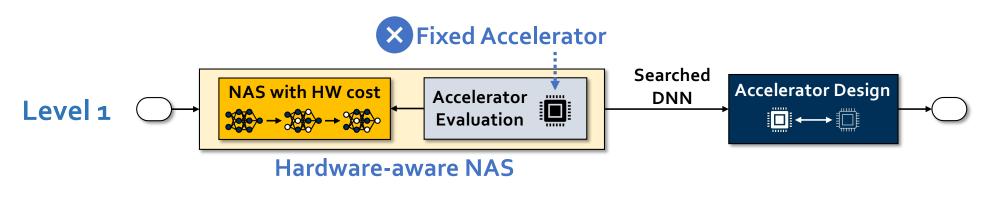


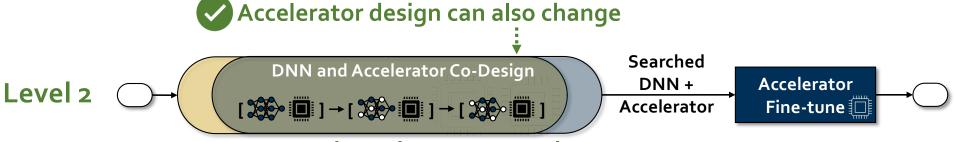
Deep Neural Network (DNN) Design

Accelerator Design

Deep Neural Network (DNN) Design

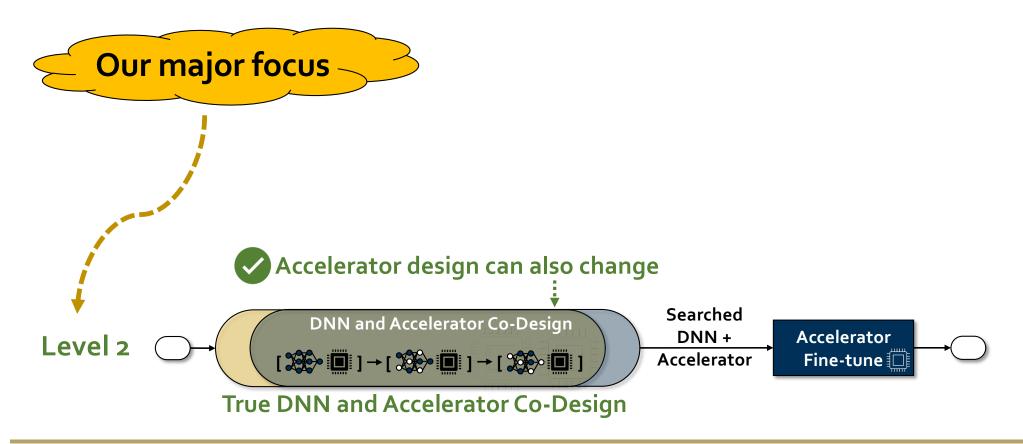
Accelerator Design



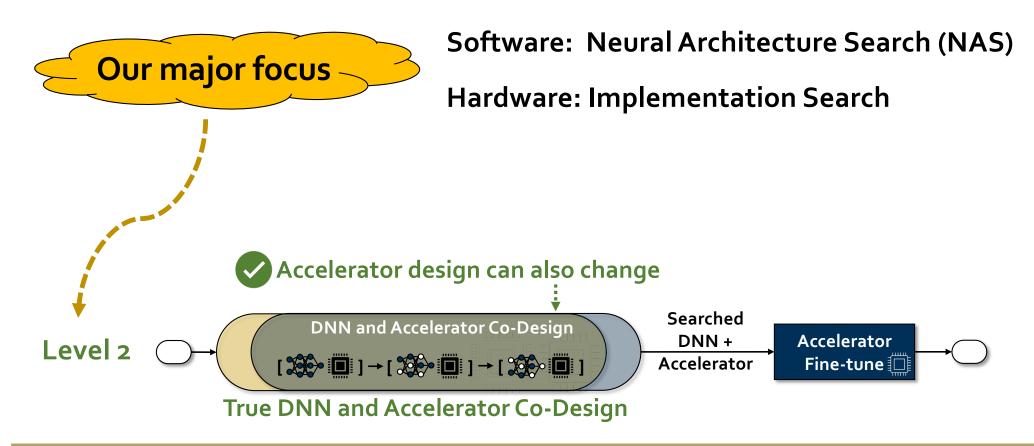


True DNN and Accelerator Co-Design

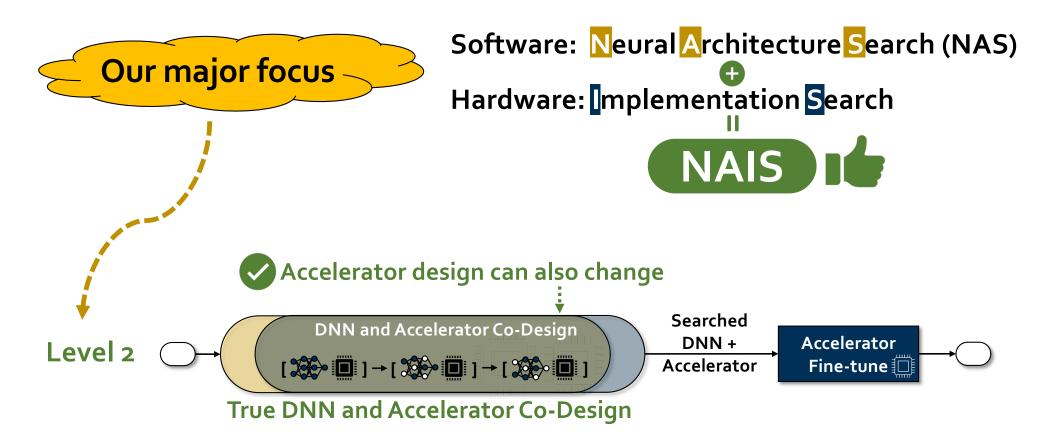
Level 2 Co-Design for DNN/Accelerator



Level 2 Co-Design for DNN/Accelerator

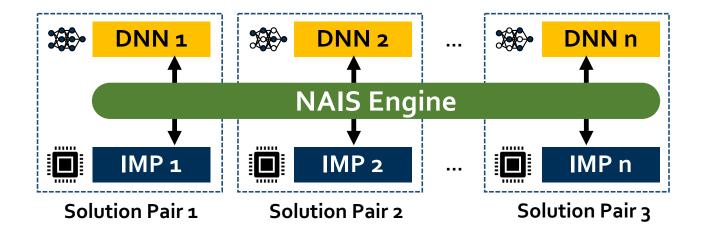


Level 2 Co-Design for DNN/Accelerator



NAIS: Simultaneous NAS + Implementation

Simultaneous NAS and Implementation search



NAIS: Simultaneous NAS + Implementation

Simultaneous NAS and Implementation search



Automated AI algorithm development and deployment

Bridge the gap between SW/HW for higher quality solutions

Software:

Neural Architecture Search Space

Hardware:

Implementation Search Space

Software:

Neural Architecture Search Space

Hardware: Implementation Search

Space

Method 1: find something in the middle and connect to both SW and HW

Software:

Neural Architecture Search Space

Hardware:

Implementation Search Space

Method 1: find something in the middle and connect to both SW and HW

Method 2: merge the two spaces – formulate both in one equation

Software:

Neural Architecture Search Space

Hardware:

Implementation Search Space

Method 1: find something in the middle and connect to both SW and HW

Hao, Cong, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-mei Hwu, and Deming Chen. "FPGA/DNN co-design: An efficient design methodology for IoT intelligence on the edge." ACM/IEEE DAC, 2019. (seems to be most cited in DAC 2019)

Accelerators (FPGA)

DNNs are usually built by repeated or similar basic blocks Activation function Activation function $f(\mathbf{x})$ $f(\mathbf{x})$ $f(\mathbf{x}) - \mathbf{x}$ Weight layer Weight layer Activation function **Activation function** Weight layer Weight layer

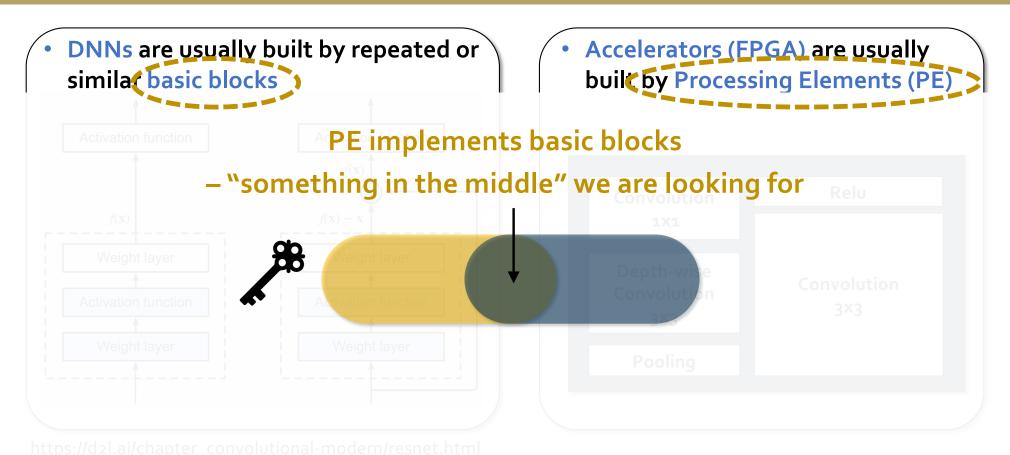
Accelerators (FPGA)

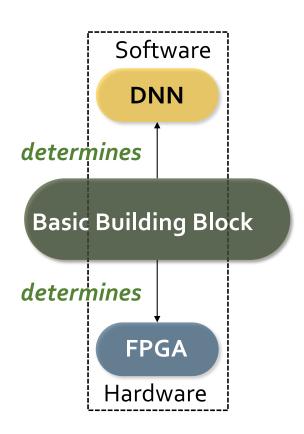
https://d2l.ai/chapter_convolutional-modern/resnet.html

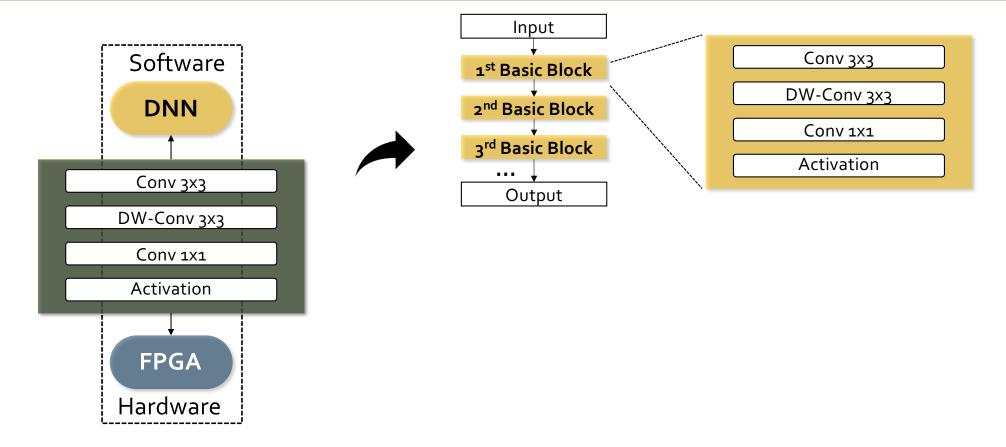
DNNs are usually built by repeated or similar basic blocks Activation function Activation function $f(\mathbf{x})$ $f(\mathbf{x})$ $f(\mathbf{x}) - \mathbf{x}$ Weight layer Weight layer Activation function Activation function Weight layer Weight layer

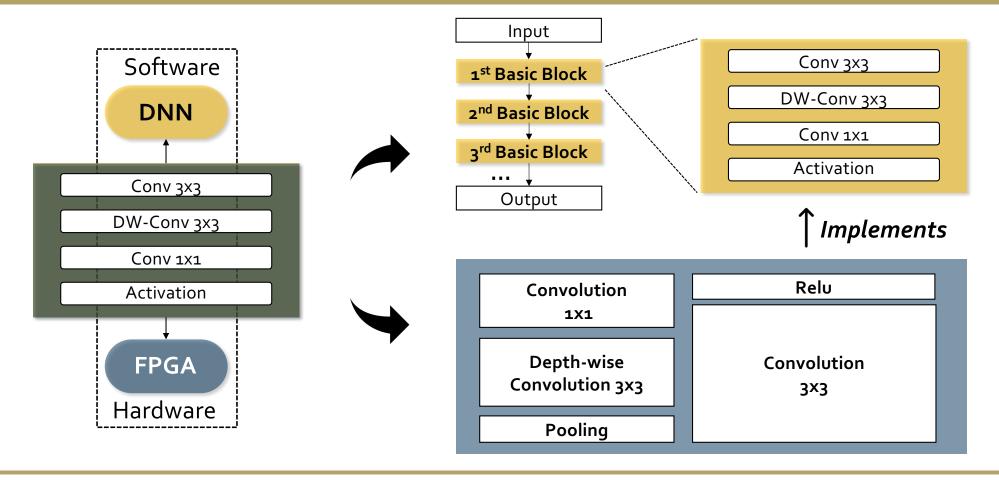
Accelerators (FPGA) are usually built by Processing Elements (PE) Relu Convolution 1X1 **Depth-wise** Convolution Convolution 3x3 3X3 **Pooling**

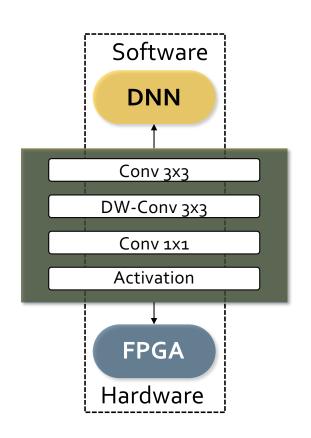
https://d2l.ai/chapter_convolutional-modern/resnet.html

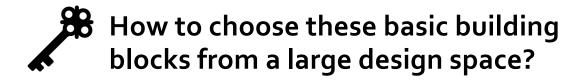


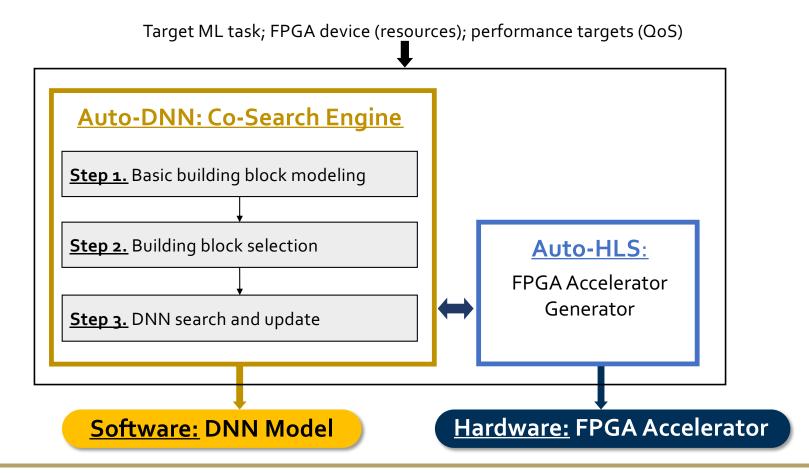


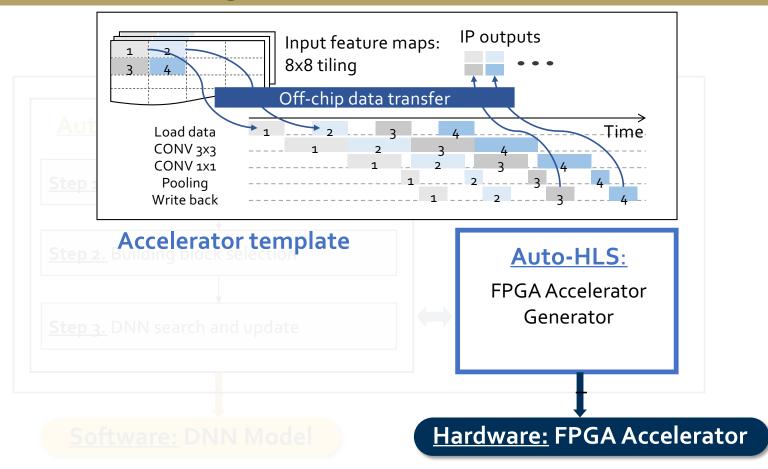


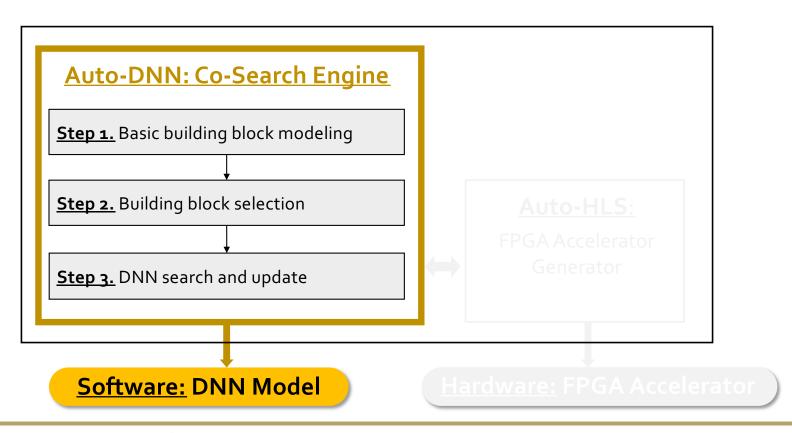


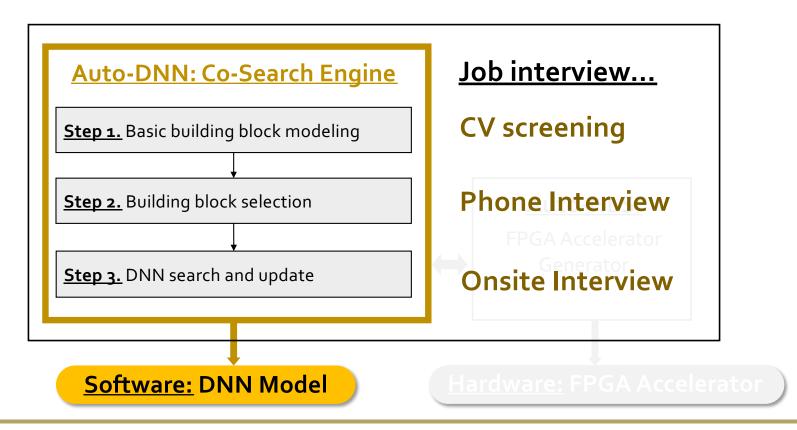


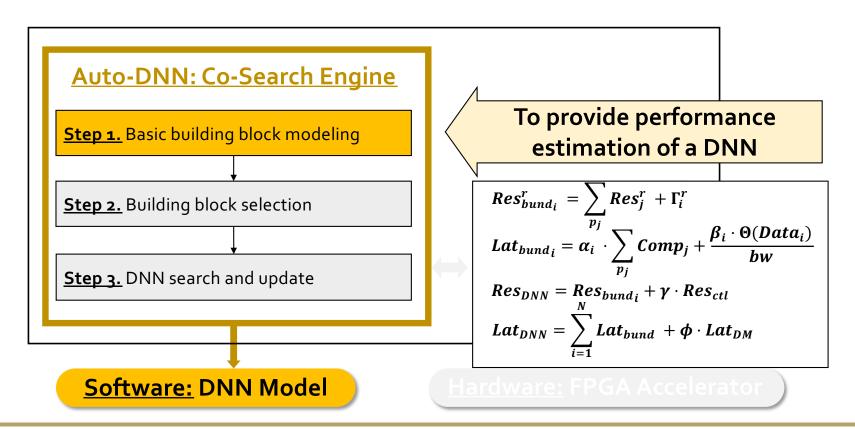


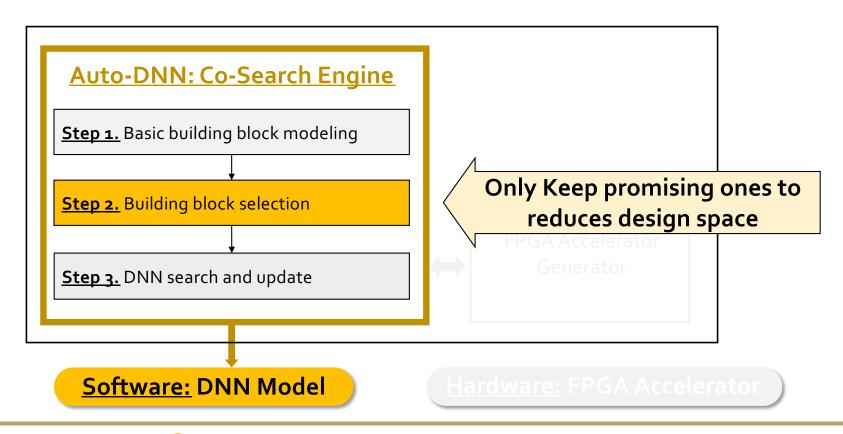




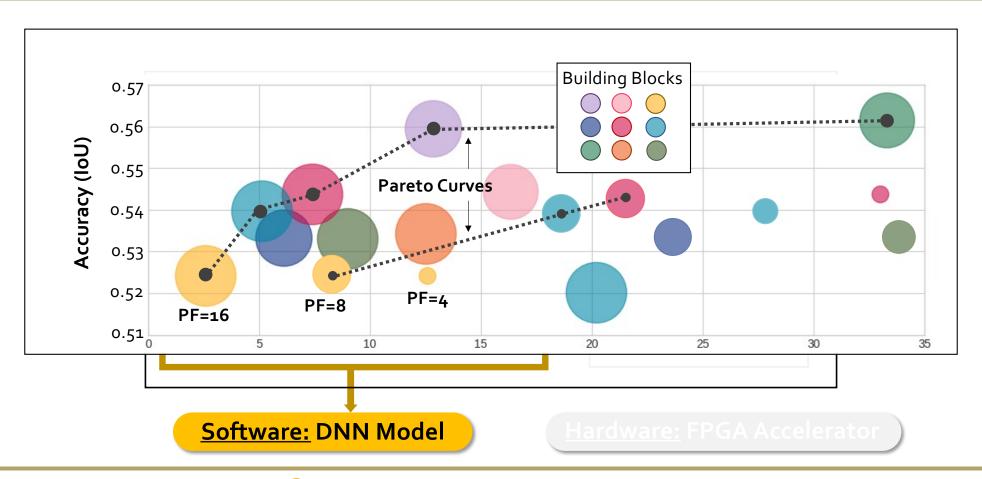




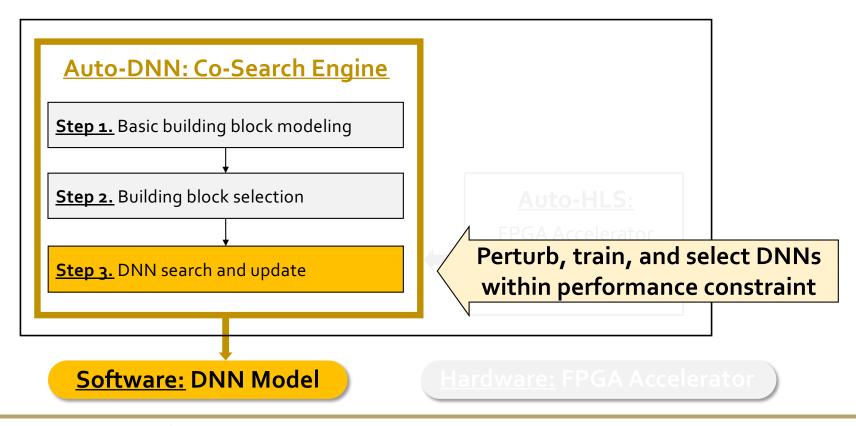




DNN/FPGA Co-Design Flow



DNN/FPGA Co-Design Flow



- **Design Automation Conference System Design Contest (DAC-SDC)**
 - Object detection on FPGA/GPU
- **Our Achievements**
 - **2018:** Third place @ FPGA (3 out of 51)

- **Design Automation Conference System Design Contest (DAC-SDC)**
 - Object detection on FPGA/GPU
- **Our Achievements**
 - **2018:** Third place @ FPGA (3 out of 51)

Independently designed DNN and FPGA accelerator – a lot of iterations!

- **Design Automation Conference System Design Contest (DAC-SDC)**
 - Object detection on FPGA/GPU
- **Our Achievements**
 - **2018:** Third place @ FPGA (3 out of 51)

Independently designed DNN and FPGA accelerator – a lot of iterations!

2019: Double championship @ FPGA and GPU (1 out of 58, 1 out of 56)

- **Design Automation Conference System Design Contest (DAC-SDC)**
 - Object detection on FPGA/GPU
- **Our Achievements**
 - **2018:** Third place @ FPGA (3 out of 51)

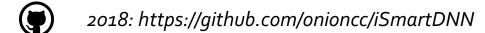
Independently designed DNN and FPGA accelerator – a lot of iterations!

2019: Double championship @ FPGA and GPU (1 out of 58, 1 out of 56)

NAIS co-design leads to victory!

Media coverage and open-source code

https://www.ibm.com/blogs/research/2019/06/winning-ai-algorithms-drones/



2019: https://github.com/TomGoo8/SkyNet

2020: https://github.com/jgoeders/dac_sdc_2020_designs

Key Methodologies for Co-Design

Software:

Neural Architecture Search Space

Hardware: Implementation Search Space

Method 1: find something in the middle and connect to both SW and HW

Key Methodologies for Co-Design

Software:

Neural Architecture Search Space

Hardware: Implementation Search Space

Li, Yuhong, Cong Hao, Xiaofan Zhang, Xinheng Liu, Yao Chen, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. "EDD: Efficient differentiable DNN architecture and implementation co-search for embedded AI solutions." DAC 2020

Method 2: merge the two spaces – formulate both in one equation

A True NAIS work EDD [ICCAD'19, DAC'20]

Key Methodologies for Co-Design

Software:

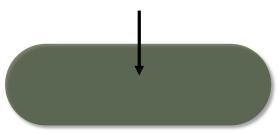
Neural Architecture Search Space

{A}

Hardware: Implementation Search Space

{I}

- Put {A, I} into one formulation, preferably differentiable
- Solve {A, I} using continuous optimization, e.g., Gradient Descent
- Method 2: merge the two spaces – formulate both in one equation



A True NAIS work EDD [ICCAD'19, DAC'20]

NAIS Formulation

$$min: \ \mathcal{L} = \underline{Acc_{loss}(A)} \cdot Perf_{loss}(I_0)$$

A is differentiable with respect to \mathcal{L}

Implementation I_0 is fixed (not in the search space)

NAIS Formulation True co-design

$$min: \ \mathcal{L} = \underline{Acc_{loss}(A, I)} \cdot \underline{Perf_{loss}(I)} + \beta \cdot \underline{C^{RES(I) - RES_{ub}}}$$

A is differentiable with respect to \mathcal{L}

Implementation I is also variable

Consider resource constraints

NAIS Formulation

(not in the search space)

$$min: \ \mathcal{L} = \underbrace{Acc_{loss}(A) \cdot Perf_{loss}(I_0)}_{A \text{ is differentiable}}$$
 Implementation I_0 is fixed

NAIS Formulation True co-design

$$min: \ \mathcal{L} = \underbrace{Acc_{loss}(\textbf{A}, \textbf{I})}_{A \text{ is differentiable with respect to } \mathcal{L}} \cdot \underbrace{Perf_{loss}(\textbf{I})}_{Implementation \ \textbf{I}} + \beta \cdot \underbrace{C^{RES(\textbf{I}) - RES_{ub}}}_{Consider \text{ resource constraints}}$$

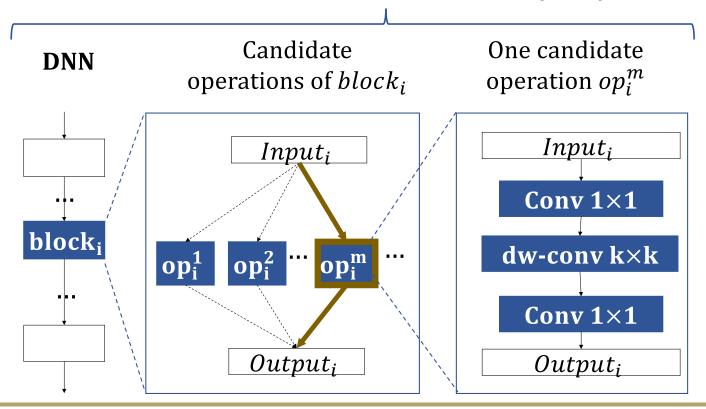
Challenge

How to formulate I as differentiable with respect to \mathcal{L} ?

with respect to \mathcal{L}

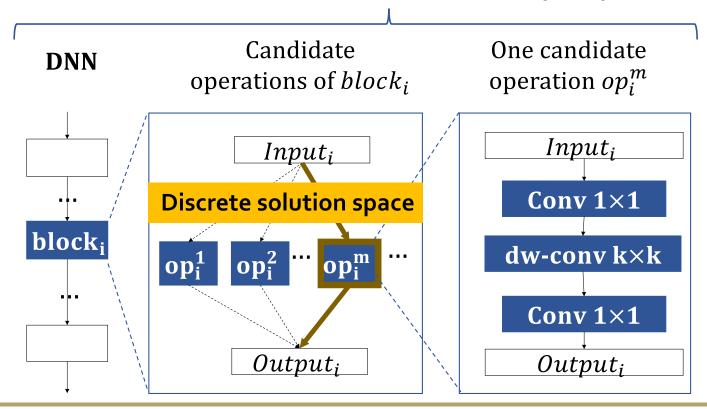
Differentiable DNN Architecture Search

Neural Architecture Search (NAS)



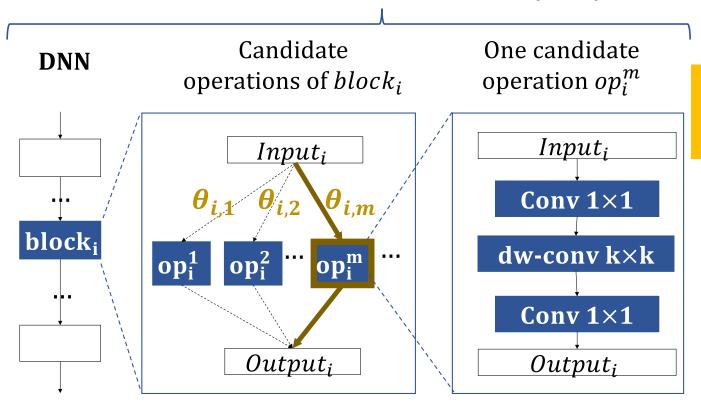
Differentiable DNN Architecture Search

Neural Architecture Search (NAS)



Differentiable DNN Architecture Search

Neural Architecture Search (NAS)



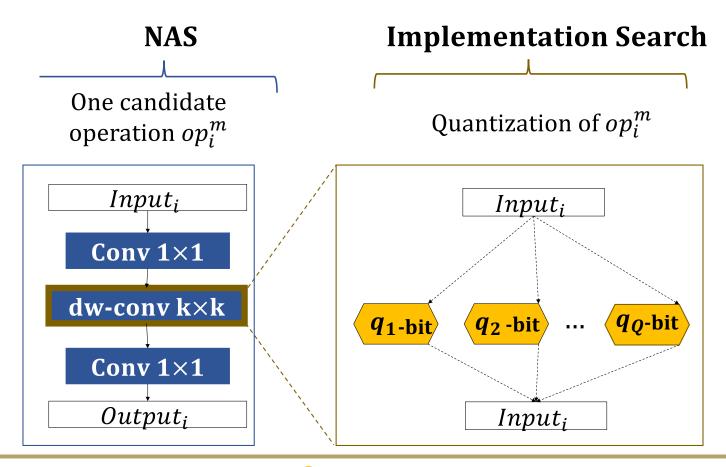
From discrete to continuous for differentiable:

Gumbel-Softmax

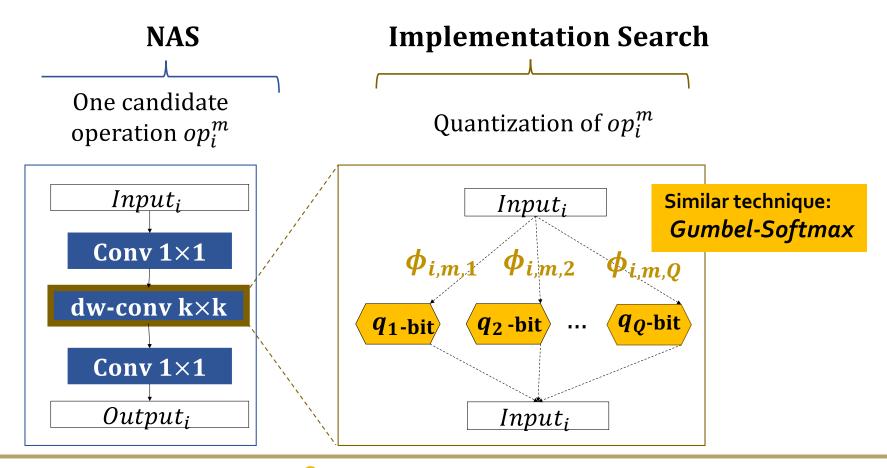
- Sampling parameter $\theta_{i,m}$
- Operations sampled following Gumbel-Softmax distribution
- $\theta_{i,m}$ is differentiable with respect to $\mathcal L$

Georgia Tech

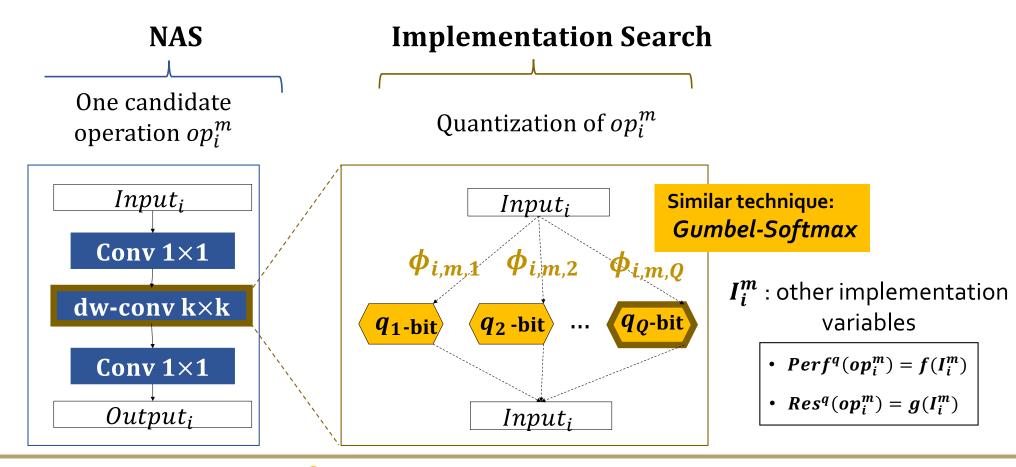
Differentiable Implementation Search



Differentiable Implementation Search



Differentiable Implementation Search



Now Since Everything is Differentiable...

NAS

Implementation Search

min: $\mathcal{L} = Acc_{loss}(\mathbf{A}, \mathbf{I}) \cdot Perf_{loss}(\mathbf{I}) + \beta \cdot C^{RES(\mathbf{I}) - RES_{ub}}$

Continuous Optimization: gradient descent

dw-conv k×k

Conv 1×1

 q_1 -bit q_2 -bit q_2 -bit q_2 -bit q_2 -bit q_3 -bit q_4

 $oldsymbol{I_i^m}$: other implementation variables

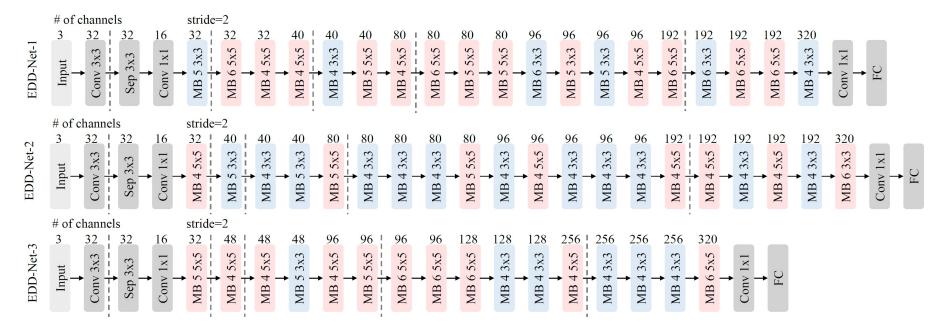
$$Perf^q(op_i^m) = f(I_i^m)$$

$$Res^q(op_i^m) = g(I_i^m)$$

Comparisons with hardware-aware NAS

	Test Error (%)		GPU Latency	FPGA Latency	
	Top-1	Top-5	Titan RTX	ZCU102 [22]	
Baseline Models					
GoogleNet	30.22	10.47	27.75 ms	13.25 ms	•
MobileNet-V2	28.1	9.7	17.87 ms	10.85 ms	
ShuffleNet-V2	30.6	11.7	21.91 ms	NA	
ResNet18	30.2	10.9	9.71 ms	10.15ms	
Hardware-aware N	AS Mo	dels			
MNasNet-A1	24.8	7.5	17.94 ms	8.78 ms	,
FBNet-C	24.9	7.6	22.54 ms	12.21 ms	
Proxyless-cpu	24.7	7.6	21.34 ms	10.81 ms	
Proxyless-Mobile	25.4	7.8	21.23 ms	10.78 ms	
Proxyless-gpu	24.9	7.5	15.72 ms	10.79 ms	
EDD-Net-1	25.3	7.7	11.17 ms	11.15 ms	GPU-oriented DNN
EDD-Net-2	25.4	7.9	13.00 ms	7.96 ms	FPGA-oriented DNI

Comparisons with hardware-aware NAS



EDD-Net-1: targets GPU

EDD-Net-2: targets recursive FPGA accelerator

EDD-Net-3: targets pipelined FPGA accelerator

Follow-up Works using Differentiable Approach Tech

Dna: **Differentiable** network-accelerator co-search

Y Zhang, Y Fu, W Jiang, C Li, H You, M Li... - arXiv preprint arXiv ..., 2020 - arxiv.org

ConCoDE: Hard-constrained **Differentiable** Co-Exploration Method for Neural Architectures and Hardware Accelerators

D Hong, K Choi, HY Lee, J Yu, Y Kim, N Park, J Lee - 2021 - openreview.net

Dance: Differentiable accelerator/network co-exploration

K Choi, D Hong, H Yoon, J Yu, Y Kim... - 2021 58th ACM/IEEE ..., 2021 - ieeexplore.ieee.org

DIAN: Differentiable accelerator-network co-search towards maximal dnn efficiency

Y Zhang, Y Fu, W Jiang, C Li, H You... - 2021 IEEE/ACM ..., 2021 - ieeexplore.ieee.org

Triple-Search: Differentiable Joint-Search of Networks, Precision, and

Accelerators

Y Fu, Y Zhang, H You, Y Lin - 2020 - openreview.net

Software: Neural Architecture Search (NAS) Hardware: Implementation Search NAIS I

Software: Neural Architecture Search (NAS) Hardware: Implementation Search NAIS

Multi-modal Multi-task Models

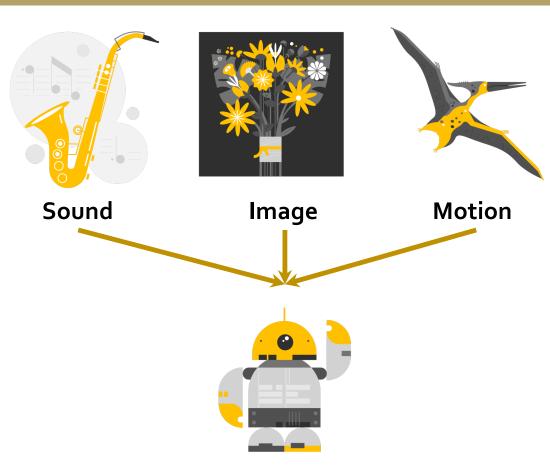
Software: Neural Architecture Search (NAS)

Multi-modal Multi-task Models

Heterogeneous Platform Mapping-aware NAIS

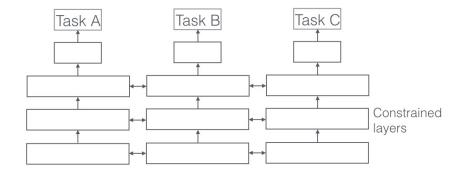
Multi-modal Multi-Task Models (MMMT)

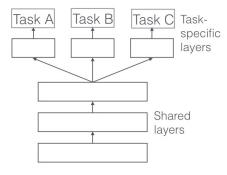
- Multi-modal: process and relate information from multiple modalities
 - Text, visual, vocal, motion, etc.



Multi-modal Multi-Task Models (MMMT)

- Multi-modal: process and relate information from multiple modalities
 - Text, visual, vocal, motion, etc.
- Multi-task: to learn multiple related tasks jointly
 - Knowledge transfer
 - Improve the generalization performance
 - Mitigate training (labeled) data sparsity





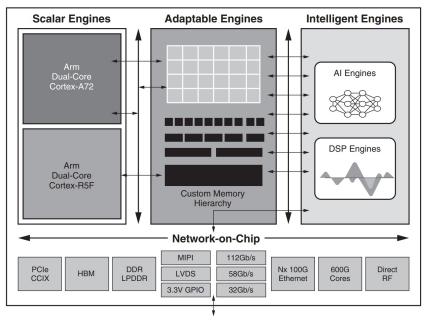
Ruder, Sebastian. "An overview of multi-task learning in deep neural networks." arXiv preprint arXiv:1706.05098 (2017).

Multi-modal Multi-Task Models (MMMT)

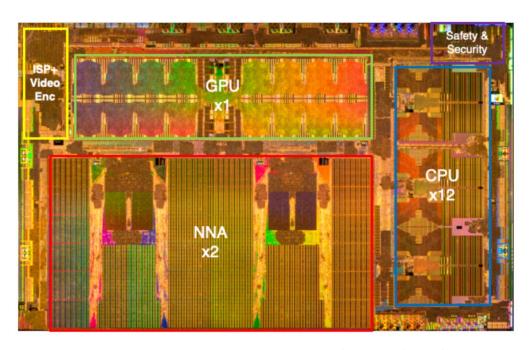
- Multi-modal: process and relate information from multiple modalities
 - Text, visual, vocal, motion, etc.
- Multi-task: to learn multiple related tasks jointly
 - Knowledge transfer
 - Improve the generalization performance
 - Mitigate training (labeled) data sparsity

Largely increased complexity in model structure

Heterogeneous Platforms



https://www.xilinx.com/support/documentation/white_papers /wp505-versal-acap.pdf



Talpes, Emil, et al. "Compute solution for tesla's full selfdriving computer." IEEE Micro 40, no. 2 (2020): 25-35.

Heterogeneous Platforms

When MMMT Meets Heterogeneity

Largely increased complexity in model structure

Largely increased complexity in heterogeneous platforms

Mapping starts to matter...

Scheduling starts to matter...

Optimization on each device also matters...

When MMMT Meets Heterogeneity

Largely increased complexity in model structure

Largely increased complexity in heterogeneous platforms

Mapping starts to matter...

Scheduling starts to matter...

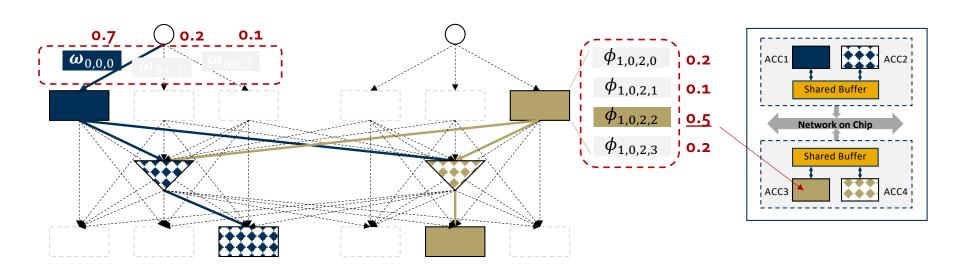
Optimization on each device also matters...

Mapping Formulation

Scheduling Formulation

An Example of NAIS + Mapping Formulation

Mapping Formulation

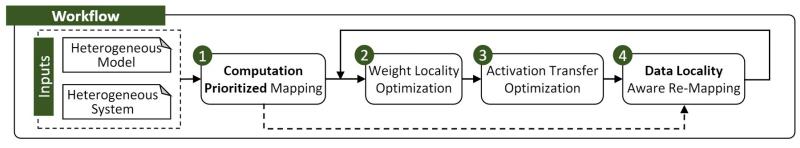


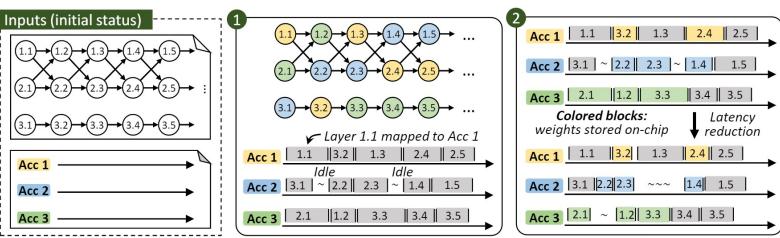
Hao, Cong, and Deming Chen. "Software/Hardware Co-design for Multi-modal Multi-task Learning in Autonomous Systems." In 2021 IEEE 3rd AICAS, 2021.

NAIS + Scheduling + Mapping

Mapping

Scheduling





Xinyi, Zhang, Cong Hao, et al., "H2H: Heterogeneous Model to Heterogeneous System Mapping with Computation and Communication Awareness" To appear at DAC'22

NAIS + MMMT + Heterogeneity

Mapping

Hao, Cong, and Deming Chen. "Software/Hardware Co-design for Multimodal Multi-task Learning in Autonomous Systems." IEEE 3rd AICAS, 2021.

Scheduling

Xinyi, Zhang, Cong Hao, et al., "H2H: Heterogeneous Model to Heterogeneous System Mapping with Computation and Communication Awareness"To appear at DAC'22

Implementation Optimization

Li, Yuhong, Cong Hao, et al. "EDD: Efficient differentiable dnn architecture and implementation co-search for embedded ai solutions." ACM/IEEE DAC, 2020

Summary & Thanks!

- **Basic: DNN and Accelerator** Co-design – three levels
- NAIS: simultaneous neural architecture and implementation co-search
- **Future:** when multi-modal multi-task (MMMT) models meet heterogeneous platforms

