
A RAJA-based Tuning Framework for Multi-Platform Performance Prediction
William K. Killian1,2, Adam J. Kunen2, Ian Karlin2, John Cavazos1 1 University of Delaware 2 Lawrence Livermore National Laboratory

KRIPKE

RAJA Performance Portability Layer

Motivation

Conclusion and Future Work

•	 KRIPKE is a proxy application for Sn particle transport developed at LLNL
•	 Highly dimensional: composed of directions, groups, zones, and moments
•	 Many possible nestings of data and execution. Difficult to find the best
•	 Solves the linear Bolzmann equation using sweeps over a 3D domain space
•	 Goal: find optimal execution policies for common configurations of KRIPKE

Sweep (t=1) Sweep (t=2) Sweep (t=3)
Time sequence of the sweep kernel (H-1) moving through the mesh. Multiple
sweeps can occur at the same time. Grid contention occurs when a location has
equal manhattan distance from two or more sources (corners).

for d in range(0,dom<IDirection>(id)):
 for nm in range(0,dom<IMoment>(id)):
 for g in range(0,dom<IGroup>(id)):
 for z in range(0,dom<IZone>(id)):

Basic loop implementation
NestedPolicy<
 ExecList<
 seq_exec, seq_exec,
 omp_for_nowait_exec, simd_exec>,
 OMP_Parallel<
 Tile<
 TileList<
 tile_none, tile_none,
 tile_none, tile_fixed<512>>,
 Permute<PERM_JIKL>
 >
 >
>

Example RAJA Execution Policy to apply

#pragma omp parallel
for z2 in range(0,dom<IZone>(id),512):
 for d in range(0,dom<IDirection>(id)):
 for nm in range(0,dom<IMoment>(id)):
 #pragma omp for nowait
 for g in range(0,dom<IGroup>(id)):
 for z in range(z2,z2+512):

Nested Policy applied to loop

•	 Provides C++ abstractions to enable architecture portability
•	 Predefined execution policies exist for SIMD, OpenMP, and CUDA
•	 Nested and advanced loop transformations (tiling, reordering) are available
•	 Goal: use RAJA to drive optimization performance prediction for KRIPKE

Policy Description and Generation
•	 Execution policies: sequential, SIMD, OpenMP, collapsed OpenMP
•	 Tiling policies: no tiling and fixed tiles of sizes 8, 32, 128, and 512
•	 Constraints: standard language conformance, tiles must fit in L3

cache, no nested parallelism
•	 Policies are generated for each independent loop nest
•	 Kernel loop nest size: three 4-nested, one 3-nested, one 2-nested)

•	 Used the RAJA performance portability layer to explore a large optimization space
efficiently within the KRIPKE Sn transport proxy application

•	 The best known execution time of KRIPKE improves by 19.5%.
•	 Graph-based program feature extraction allows for an architecture-portable way of

charactering programs for multiple architectures
•	 Execution time prediction from 20% of random kernel samples (10% train, 10% test)

for KRIPKE achieves mean accuracy of 93.3%

Future Work
•	 Expand results to include GPU execution policies (NVIDIA Kepler/Pascal) and nested

parallelism with many-core (Intel Knight’s Landing) architectures

Acknowledgments and Resources
[1] A. J. Kunen, T. S. Bailey, P. N. Brown, KRIPKE - A Massively Parallel Transport Mini-App,

American Nuclear Society M&C, 2015 [https://codesign.llnl.gov/kripke.php]
[2] R. D. Hornung and J. A. Keasler, The RAJA Portability Layer: Overview and Status, Tech

Report, LLNL-TR-661403, Sep. 2014. [https://github.com/llnl/RAJA]
[3] W. Killian, A. J. Kunen, I. Karlin, J. Cavazos, Discovering Optimal Execution Policies in KRIPKE

using RAJA, ACM SRC SuperComputing 2016. [http://www.udel.edu/003786]

Ψi+1 = H-1 L+ (Σs L Ψi + Q)

•	 Legacy physics applications need updating to run well on newer architectures
but are not always designed for architecture flexibility

•	 With architectures changing frequently (multicore, many-core, GPU),
applications need to be adaptable to many different architectures.

•	 Adaptive, flexible programming layers are necessary to intelligently search
large optimization spaces.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Versions in increasing order of speedup

Sp
ee

du
p

ov
er

 O
pe

nM
P

ba
se

lin
e

● - LTimes ● - LPlusTimes ● - Scattering ● - Sweep ● - Source

Performance Analysis

•	 Architecture: dual-socket Intel Xeon E5-2670, 32GB DDR3 RAM
•	 Compiler: Clang 3.8.0 with OpenMP support (-O3 -march=native)
•	 The best independently discovered policies yields an overall application

speedup over the basline OpenMP KRIPKE version by 19.5%

RAJA as a Tuning Framework

RAJA
Autotuning
Framework

Tuning
Config
File

(OpenMP)

Host Compiler
(clang)

C++

RAJA
(OpenMP)

C++

RAJA
(OpenMP)

C++

RAJA
(OpenMP)

elf
Binary

(OpenMP)

elf
Binary

(OpenMP)

elf
binary

(OpenMP)

C++

RAJA

Work Highlighted in This Research

elf
binary

(OpenMP)

objdump
x86-64
asm

ComIL
x64-64
Parser

ComIL
asm

ComIL
Graph

Generator

ComIL
Graph

ComIL Ruleset

OpenMP and PTX

elf
binary

+
PTX

cuobjdump
SASS
asm

ComIL
SASS
Parser

ComIL
asm

Feature Extraction and Performance Prediction

Performance Prediction with Graph-Based Program Features
•	 Split versions into three groups: training (10%), test (10%), and validation (80%)
•	 Extract projected eigenvectors from the adjacency matrix of each graph and create a

projected view of the features, yielding a graph spectral feature (GSF) for each version
•	 Feed the training set through a deep neural network with a regression outcome on the

execution time of a given instance. Use the test set to minimize overfitting.
•	 With the generated model, evaluate the remaining 80% of instances and compare the

predicted performance to the actual performance. KRIPKE has mean accuracy of 93.3%

•	 ComIL is a Common Instruction format for Learning, capable of representing many
modern ISAs (currently parsers exist for x84-64 and PTX)

•	 Special considerations for the construction of the graph and instructions are made for
OpenMP and CUDA (specifically calls to parallel/device regions)

•	 Each loop nest is identified and re-written as a RAJA forallN loop
•	 The tuning configuration file describes the limitations above in a

JSON format that the framework can process
•	 The framework will generate all accepted versions of each file and

generate a corresponding header file for a loop nest, representing
each applied policy as a type (e.g. NestedPolicy)

•	 Each version can then be compiled with a C++11 enabled compiler

