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KRIPKE

RAJA Performance Portability Layer

Motivation

Conclusion and Future Work

•	 KRIPKE is a proxy application for Sn particle transport developed at LLNL
•	 Highly dimensional: composed of directions, groups, zones, and moments
•	 Many possible nestings of data and execution. Difficult to find the best
•	 Solves the linear Bolzmann equation using sweeps over a 3D domain space
•	 Goal: find optimal execution policies for common configurations of KRIPKE

Sweep (t=1) Sweep (t=2) Sweep (t=3)
Time sequence of the sweep kernel (H-1) moving through the mesh. Multiple 
sweeps can occur at the same time. Grid contention occurs when a location has  
equal manhattan distance from two or more sources (corners).

for d in range(0,dom<IDirection>(id)):
  for nm in range(0,dom<IMoment>(id)):
    for g in range(0,dom<IGroup>(id)):
      for z in range(0,dom<IZone>(id)):   

Basic loop implementation
NestedPolicy<
 ExecList<
  seq_exec, seq_exec,
  omp_for_nowait_exec, simd_exec>,
 OMP_Parallel<
  Tile<
   TileList<
    tile_none, tile_none,
    tile_none, tile_fixed<512>>,
   Permute<PERM_JIKL>
  >
 >
>

Example RAJA Execution Policy to apply

#pragma omp parallel
for z2 in range(0,dom<IZone>(id),512):
  for d in range(0,dom<IDirection>(id)):
    for nm in range(0,dom<IMoment>(id)):
      #pragma omp for nowait
      for g in range(0,dom<IGroup>(id)):
        for z in range(z2,z2+512):

Nested Policy applied to loop

•	 Provides C++ abstractions to enable architecture portability
•	 Predefined execution policies exist for SIMD, OpenMP, and CUDA
•	 Nested and advanced loop transformations (tiling, reordering) are available
•	 Goal: use RAJA to drive optimization performance prediction for KRIPKE

Policy Description and Generation
•	 Execution policies: sequential, SIMD, OpenMP, collapsed OpenMP
•	 Tiling policies: no tiling and fixed tiles of sizes 8, 32, 128, and 512
•	 Constraints: standard language conformance, tiles must fit in L3 

cache, no nested parallelism
•	 Policies are generated for each independent loop nest
•	 Kernel loop nest size: three 4-nested, one 3-nested, one 2-nested)

•	 Used the RAJA performance portability layer to explore a large optimization space 
efficiently within the KRIPKE Sn transport proxy application

•	 The best known execution time of KRIPKE improves by 19.5%.
•	 Graph-based program feature extraction allows for an architecture-portable way of 

charactering programs for multiple architectures
•	 Execution time prediction from 20% of random kernel samples (10% train, 10% test) 

for KRIPKE achieves mean accuracy of 93.3%

Future Work
•	 Expand results to include GPU execution policies (NVIDIA Kepler/Pascal) and nested 

parallelism with many-core (Intel Knight’s Landing) architectures
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Ψi+1 = H-1 L+ (Σs L Ψi + Q)

•	 Legacy physics applications need updating to run well on newer architectures 
but are not always designed for architecture flexibility

•	 With architectures changing frequently (multicore, many-core, GPU), 
applications need to be adaptable to many different architectures.

•	 Adaptive, flexible programming layers are necessary to intelligently search 
large optimization spaces.
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Performance Analysis

•	 Architecture: dual-socket Intel Xeon E5-2670, 32GB DDR3 RAM
•	 Compiler: Clang 3.8.0 with OpenMP support (-O3 -march=native)
•	 The best independently discovered policies yields an overall application 

speedup over the basline OpenMP KRIPKE version by 19.5% 

RAJA as a Tuning Framework
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Work Highlighted in This Research
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Feature Extraction and Performance Prediction

Performance Prediction with Graph-Based Program Features
•	 Split versions into three groups: training (10%), test (10%), and validation (80%)
•	 Extract projected eigenvectors from the adjacency matrix of each graph and create a 

projected view of the features, yielding a graph spectral feature (GSF) for each version
•	 Feed the training set through a deep neural network with a regression outcome on the 

execution time of a given instance. Use the test set to minimize overfitting.
•	 With the generated model, evaluate the remaining 80% of instances and compare the 

predicted performance to the actual performance. KRIPKE has mean accuracy of 93.3%

•	 ComIL is a Common Instruction format for Learning, capable of representing many 
modern ISAs (currently parsers exist for x84-64 and PTX)

•	 Special considerations for the construction of the graph and instructions are made for 
OpenMP and CUDA (specifically calls to parallel/device regions) 

•	 Each loop nest is identified and re-written as a RAJA forallN loop
•	 The tuning configuration file describes the limitations above in a 

JSON format that the framework can process
•	 The framework will generate all accepted versions of each file and 

generate a corresponding header file for a loop nest, representing 
each applied policy as a type (e.g. NestedPolicy)

•	 Each version can then be compiled with a C++11 enabled compiler


