A RAJA-based Tuning Framework for Multi-Platform Performance Prediction -

William K. Killian!?, Adam J. Kunen?, lan Karlin?, John Cavazos! ! University of Delaware 2 Lawrence Livermore National Laboratory

Feature Extraction and Performance Prediction

Motivation Policy Description and Generation

e ComlL is a Conmon Instruction format for Learning, capable of representing many

e |egacy physics applications need updating to run well on newer architectures e Execution policies: sequential, SIMD, OpenMP, collapsed OpenMP
modern ISAs (currently parsers exist for x84-64 and PTX)

but are not always designed for architecture flexibility

e Tiling policies: no tiling and fixed tiles of sizes 8, 32, 128, and 512
e Special considerations for the construction of the graph and instructions are made for

e \With architectures changing frequently (multicore, many-core, GPU),

e (Constraints: standard language conformance, tiles must fit in L3

icat] | | . OpenMP and CUDA (specifically calls to parallel /device regions
applications need to be adaptable to many different architectures. cache, no nested parallelism P (sp y P / g)
o Adaptlve,. ﬂgxble programming layers are necessary to intelligently search e Policies are generated for each independent loop nest elf k h — h — M
large optimization spaces. | binary | x86-64 0l ComlL - ComlL
e Kernel loop nest size: three 4-nested, one 3-nested, one 2-nested) T obdume = TP T ™ o TR P ™™ Graph
Parser —» Generator
U= (OpenMP) > T A
e KRIPKE is a proxy application for Sn particle transport developed at LLNL RAJA as a Tunlng Framework . Comll Ruleset
e Highly dimensional: composed of directions, groups, zones, and moments TN ;openmpand PTX; Work Highlighted in This Research
e Many possible nestings of data and execution. Difficult to find the best e i
(OpenMP)
e Solves the linear Bolzmann equation using sweeps over a 3D domain space M { . - & b_e'f AN SASSR o) th
: : : .. : .)& If Inary . om
e Goal: find optimal execution policies for common configurations of KRIPKE C+it RAJA C++ e © L | cuobidump e SASS > o T
—p Autotuning > L Os(cla(;g])pl Ly binary Sy Parser
Ep _ H__Z L+ Zl L w + Q RAJA Framework RAJA
- - - OpenMP . . .
141 (S ?) (OpenMP) |- rePl Performance Prediction with Graph-Based Program Features
e Each loop nest is identified and re-written as a RAJA forallN loop e Split versions into three groups: training (10%), test (10%), and validation (80%)
e [he tuning configuration file describes the limitations above In a e [Extract projected eigenvectors from the adjacency matrix of each graph and create a
JSON format that the framework can process projected view of the features, yielding a graph spectral feature (GSF) for each version
e [he framework will generate all accepted versions of each file and e [eed the training set through a deep neural network with a regression outcome on the
generate a corresponding header file for a loop nest, representing execution time of a given instance. Use the test set to minimize overfitting.
each applied policy as a type (e.g. NestedPolicy) e \With the generated model, evaluate the remaining 80% of instances and compare the
e Each version can then be compiled with a C++11 enabled compiler predicted performance to the actual performance. KRIPKE has mean accuracy of 93.3%

Sweep (t=1) Sweep (t=2) Sweep (t=3)
Time sequence of the sweep kernel (H?') moving through the mesh. Multiple :
sweeps can occur at the same time. Grid contention occurs when a location has Pe rfOrmance Ana|ySIS

equal manhattan distance from two or more sources (corners).

1.6 1 @ -LTimes @ -LPlusTimes @ - Scattering @ - Sweep @ - Source

e Used the RAJA performance portability layer to explore a large optimization space

RAJA Perf()rmance P()rtab|||ty Layer 1.4 1 efficiently within the KRIPKE Sn transport proxy application

e The best known execution time of KRIPKE improves by 19.5%.

1.2 -

)
IS
e Provides C++ abstractions to enable architecture portabilit S . .
. | o -+ for SIMD. O pI\/IP dyCUDA < e Graph-based program feature extraction allows for an architecture-portable way of
: \Iretedlne dexscutlorzj [l)o ICIiS e><|:t ort. (tI PEn ,dan.) T % " charactering programs for multiple architectures
e Nested and advanced loop transformations (tiling, reordering) are available
Goal SAIA to dri P P c 9 dict: 9 cr KRIPKE § 0.8 - e Execution time prediction from 20% of random kernel samples (10% train, 10% test)
e Goal: use o drive optimization performance prediction for 3 for KRIPKE achieves mean accuracy of 93.3%
Example RAJA Execution Policy to apply Basic loop implementation o 0.6 -
NestedPolicy< for d in range(0,dom<IDirection>(id)): § Future Work
i i i : 3 0.4 - . . L
Ezz;inzz I fOiorrlmglgnrizrglzé(()(’)dzrs;?fgiigi83;;: %) e Expand results to include GPU execution policies (NVIDIA Kepler/Pascal) and nested
omp:for_nowai1—:_exec, simd_exec>, for z in range(0,dom<IZone>(id)): 0.2 - parallelism with many-core (Intel Knight's Landing) architectures
OMP_Parallel<
TileList< #pragma omp parallel Versions in increasing order of speedup [1] A. J. Kunen, T. S. Bailey, P. N. Brown, KRIPKE - A Massively Parallel Transport Mini-App,
t%le_none, t%le_none, for z2 in range(O,dom<IZor.1e>(1c.i),51?): e Architecture: dual-socket Intel Xeon E5-2670. 32GB DDR3 RAM American Nuclear Society M&C, 2015 [https://codesign.linl.gov/kripke.php]
tile_none, tile_fixed<512>>, for d in range(0,dom<IDirection>(id)): o C Jars C| 380 with OpenMP t (-03 h=native) [2] R. D. Hornung and J. A. Keasler, The RAJA Portability Layer: Overview and Status, Tech
Permute<PERM_JIKL> for mm i range (0, donstHonent> (1)) OMPIER: ~1ang =.6.5 WILT PENVIT SUPPOTt A-He -harcamnative Report, LLNL-TR-661403, Sep. 2014 [https://github.com /linl/RAJA]
>> for o in range(0 domeIGroup>(iyy: o | 1€ best independently discovered policies yields an overall application (3] _Kilian, A. J. Kunen, I. Karlin, J. Cavazos, Discovering Optimal Execution Policies in KRIPKE
’ | speedup over the basline OpenMP KRIPKE version by 19.5% using RAJA, ACM SRC SuperComputing 2016. [http://www.udel.edu/003786]

> for z in range(z2,z2+512):

