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Overview

* Many factors are driving improved design of future computer systems

. . . Decadal Plan For Semiconductors
— Electronics scaling, power, business models, etc.

ABRIDGED REPORT

— Massive demand for next-generation HPC systems (e.g., ModSim, Al, Data,
Omniverse)

— Microelectronics is recognized as a critical factor in economic wellness and

national security Basic Research Needs for

 Domain-specific computing (extreme heterogeneity) is a highly likely outcome Microelectronics

 DOE has championed codesign in HPC for at least a decade

Overview Brochure

Basic Research Needs for
Reimagining Codesign for
Advanced Scientific Computing

Unlocking Transformational Opportunities
for Future Computing Systems for Science

- Enablelintegrated design and implementation of end-to-end solutions, then
iterate!

— Domain-specific computing needs codesign

16-18 March 2021

e Abisko is a new microelectronics codesign project with the ambitious goals

— Develop better techniques for codesign from algorithms to devices and
materials

— Design Spiking Neural Network chiplet that can be integrated with
contemporary computer architectures

— Explore new devices and materials for the SNN chiplet (neuron, synapse,
plasticity, etc.)

— Design language abstractions and runtime support for SNN chiplet

e Abisko is an interdisciplinary project that includes scientists from applications,

Office of

algorithms, software, architectures, devices and circuits, and materials! @ ENERGY I

https://www.osti.gov/biblio/1822198-reimagining-codesign-advanced-scientific-computing-unlocking-transformational-opportunities-future-computing-systems-science
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Basic Research Needs for Microelectronics (2018
Workshop)

Basic Research Needs for

* Five Priority Research Directions Microelectronics
1. Flip the current paradigm [codesign]

2. Revolutionize memory and data
storage

3. Reimagine informal flow
unconstrained by interconnects

4. Redefine computing by leveraging
unexploited physical phenomena

5. Reinvent the electricity grid through
neW materialsl deVICeSI and Report of the Office of Science Workshop on

Basic Research Needs for Microelectronics

architectures October 23 — 25, 2018

https://www.osti.gov/biblio/1616249-basic-research-needs-microelectronics-report-office-science-workshop-basic-research-needs-microelectronics-
october

29 Apr 2022 Vetter @ Salishan Conf
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PRD #1: Flip the Paradigm

. APPLICATIONS

* “Define innovative material, device,

and architecture requirements AR,

driven by applications, algorithmes,

and software.” ARCHITECTURES 8

i
INTEGRATION %i o0 S

* Optimize and integrate end to end ‘-%‘

solutions across multiple levels of

abstraction for efficiency. ==

MATERIALS AND
CHEMISTRY

Figure 2. Co-design framework: From the traditional hierarchy of abstraction levels (left) to a holistic system framework (right)

https://www.osti.gov/biblio/1616249-basic-research-needs-microelectronics-report-office-science-workshop-basic-research-needs-

microelectronics-october
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PRD #4:. Redefine computing by leveraging unexploited
physical phenomena

. Vi=x, -+
* “leverage novel physical processes V”;O v vy Wy
to perform useful computation” 2"2,_,0‘@%2] I -
Vi=xy - +
* Categories v v oW vl

— Optimization machines F%?ﬁlw% W,
+ + + +
— Computational Models \éT \ﬁ \ﬁ \LT
— Partitioning b/w non-von Neumann

and von Neumann architectures A
synapses
* Examples o— | .
. . I inputs A o outpu
— Ising machines, Spiking neural po :
networks, Analog MAC with Crossbar, A neuron

optical FFT, ... 0

29 Apr 2022 Vetter @ Salishan Conf
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Abisko

* A Microelectronics Codesign Project




Abisko Vision

* Develop better techniques for ‘
Outputs

codesign from algorithms to devices
and materials

Myelin sheat

Myelinated axon

* Design Spiking Neural Network chiplet Source: Wikipedia
that can be integrated with A synapses
contemporary computer architectures |

* Explore new devices and materials for
the SNN chiplet (neuron, synapse,
plasticity, etc.)

* Design language abstractions and
runtime support for SNN chiplet

88nm
T

0.5%0.5 um
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3.8T Solenoid

Abisko Microelectronics Codesign Overview

Applications % iy e
OAK RIDGE ﬂl & HARVARD Collaborator Motivation pp ) A IS
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Arizona State Georgia

!I'l Sandia National Laboratories ~ University Tech

# * CMS Sensors

Fermilab Motifs, Composition

1. Develop better techniques for codesign from algorithms to

_ _ Algorithms S
devices and materials *  ML: SLAYER, Whetstone, EONS, Algorithms nest:: X BIAN
2. Design Spiking Neural Network chiplet that can be integrated eProp, STDP P

with contemporary computer architectures * Non-ML: Graph algorithms, CSP
3. Explore new devices and materials for the SNN chiplet * Simulators: NEST, Brian2
(neuron, synapse, plasticity, etc.)
4. Design language abstractions and runtime

API, Motifs

Software
rt for SNN chiplet ,
supportfor s chipe * DSL and API for neuromorphic co-processing Softwa re
e e Built on LLVM and MLIR | J
2’:' * Portable across Abisko chiplet, GPUs, etc. A N M LI R
) ) Simulation/Emulation
( N ISA, IR 2.5D and 3D integration 95
wansee O Architecture OZALADDIN
Myelinated axon *+ Design neuromorphic chiplet . cembd
+ RISC-V neuromorphic extensions Architecture
Source: Wikipedia ¢ Heterogeneous integration with MesaFAB ReRAM

contemporary technologies

Circuit scale up,
Interconnects, PDK

Devices and Circuits
* joninsertion (reversible doping) sets analog states

i s
* mRaman captures transition linear, DeVICeS and g
non-linear switching Circuits & L
ES Computing Discovery Platform sewe
*  Will extend to 36x36 x-bar array o puting Y Fatiorm e
|_

i  e——

— 40 mvis

@t
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u) = " 1 . g “’5
Compact models g .
. . . . CNMS scanning probe 8
Domain wall memristor Computational data mining K

* Electronic and other optical spectroscopies

. microscopy and chemical imaging
Materials BT “ocson e

*  Non-equilibrium probes to few nm
e Data-driven modeling

* On-demand neuromorphism
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Slide courtesy of Farah Fahim (FermilLab)

CMS Experiment

40MHz collision rate
~1B detector channels

FPGA filter stack
~us latency

10s Gb/s
~5kHz

10s Tb/s
100s kHz

On-detector _
AR fippression

Worldwide

ting grid
el o

datasets

On-prem CPU/GPU
1 Billion channels — filter farm

10x the average internet traffic in all of North ~100 ms latency
America
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Slide courtesy of Farah Fahim (FermiLab)

Pixel Detector: Proposed ML implementation 21

Analog — Mixed Signal implementation using

Digital neuromorphic implementation
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Ability to work in the
latent space
(downstream
resources)

Reconfigurability vs.
pruning?

On-chip inference
vs. on-chip training?

Light weight
models?

Can lead to self
calibrating
detectors?
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NeuroRad Project at ORNL

e 1: Develop a neuromorphic-capable radiation anomaly detection

Slide courtesy of
NeuroRad project @
ORNL
James Ghawaly

algorithm and evaluate on both simulated and real-world data.

e 2. Integrate neuromorphic algorithm on uCaspian board and integrate
board with low power radiation detection system.

Datasets

DOE Urban Search Challenge [1]

HFIR/REDC Static Monitors [2]

%OAK RIDGE

National Laboratory

through urban street.
9700 training runs, 15840 testing runs

Example Street and Source

Direction of detector movement

L] -

T yre

3 locations of a source

» Single 2"x4"x16" Nal(Tl) detector moving « Mulfiple static sensor "nodes” each with a

single 2"x4"x16" Nal(Tl) detector, placed
around ORNL HFIR/REDC facility.
« <200 source encounters
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Algorithms




Algorithms

* Find the best algorithms for specific
problems (like CMS sensors)

— Include comparison against SOA
techniques

Optimize algorithmic options for
specific application
— ldentify encoding of input vector

— Evaluate different configurations with
simulation

Training, Inference, Online

Interact with software and
architecture teams

* Tools

— EONS (Evolutionary optimization) for
training

— Deffe for Hyperparameter optimization
using transfer learning

29 Apr 2022

Vetter @ Salishan Conf

EONS

G e n e rates l m;:g;" Ordered Po?umlon Child
relatively (™ X
sparse [ 2\
networks . (2 S
ATy 4/‘ and Ran
Evolves the *&
structure of f@;
the network

Deffe: Data Efficient Framework
Parameters
Intelligent
Cost Metrics Sampling

Configuration Is ML
(JSON) Model

Ready

l Inference
(A ML Model

Optimal
Design

Evaluate ;
Points

(Execution of
design points
using SLURM)

Design Space Exploration

ML Model 4

Extract
(Cost Metrics)

28



Neuromorphic Approach for Smart Pixel Detection

e Goal
— Charge values from the sensor every 25ns
— Data Compression, send only particle track information — (x, y, o, B)
— PPA: in-sensor pixel detection before ADC - hence, detection model needs to be small

e First approach
— Develop simulation for test data
— Apply EONS to identify configuration for SNN algorithm
— Explore spike encoding of charge values — may need to support rational numbers

e Compared against other approaches
— Regression, Spiking convolution NN, unsupervised learning (STDP), Spike-based Object detection algorithms

4 ) 4 )

Charge values Spike EONS trained (x,y, o, B)
Per sensor array encoding SNN




Evolutionary Optimization of Neuromorphic Systems (EONS)

Ordered Population

Random Initialization Child

Best Population

Parents

5

@ Evaluate
and Rank
& /

[Schuman et al. 2020 ACM NICE Workshop]

O
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Encoding rational numbers:
- (D
the Virtual Neuron
urrent encoding methods are inadequate
- o Rgte—basedgencgding does not Sresterve addition o
o Binning loses information
(1,1) . o

0
0

1

Virtual neuron uses binary encoding, preserves addition
Takes two 2-bit numbers as inputs: x and y
Returns a 3-bit number as output: z

Ve S
(

Implemented in NEST simulator V1

AT |

[ 1 N 0
1i0 1{0 1 0} 1+1=2 \’

R i 02 S22 (1)
1i1 1!1 0 0} 1+3=4

A | X Oz (1) —_ (13
<=
111 111 1 01} 3+3=6 xo—>@ : o

[P. Date et al. Submitted]



#(,OAK RIDGE

National Laboratory

Software




Software

* Develop a holistic software stack
for neuromorphic coprocessing
on heterogeneous architectures
with a focus on

— Langua%e optimizations and code
gen with LLVM and MLIR

— Runtime portability and integration
with IRIS

* Portable across GPU, FPGA, SoC,
and Abisko chiplet simulator

* Based on successful experiences
with Quantum computing at

ORNL:

— XACC, QCOR

* Building embedded DSL (Domain
Specific Language) with LLVM and

MLIR 4

COMPILER INFRASTRUCTURE I I LI R

29 Apr 2022

IRIS Host Code
(C/C++/Fortran/ Kernel
Python)

Dynamic
Platform
Loader

OpenMP Application

Others (SYCL, Chapel, ...)

Abisko EDSL

(=
¥
-

Shared Virtual Device Mem

LPDDR4

LPDDR4

LPDDR4

Vetter @ Salishan Conf

[Kim et al. HPEC 2021]
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XACC/QCOR Approach for Algorithmic Portability across
Many Quantum Architectures

#define __qpu__ [[clang::syntax(qcor)]] YOld Anterpat bstt_culliaren, S9%):
internal_bell_call(q, shots);
__qpu__ void bell(qreg q, int shots) { }
. quantum DSL heré ...
} class bell : public QuantumKernel<bell, qreg, int> {
public:
bell(qreg q, int shots)
: QuantumKernel<bell,qreg,int>(q, shots) {}
~bell() {
. execute on backend .... :
: QuantumRuntime
| H
. void internal_bell_call(qreg q, int shots) {
qcor SynTGXHOndler rewrites class bell kernel(q, shots);
function fo QuantumKernel }
subtype.
Program call to bell function is a call to another
infernal function that instantiates a temporary
instance of the new QuantumKernel sub-type.

29 Apr 2022 Vetter @ Salishan Conf 41



Investigating Software
Abstractions for SNN

 Prototyping solutions in multiple
SNN frameworks to understand
what might constitute EDSL
feature set

— NEST, PYNN, BRIAN, Nengo
— TENNIab

— LAVA

- FUGU

« Additional Questions in SNNs
— Hyperparameter optimization of SNN
— Spike encoding

neurons_dict = {}

i:
for

for

e

n in sorted(network.nodes())

node = network.get_node(n)

neurons_dict[node.id] = i

i+=1

neuron = nest.Create(self.config["neuron_model"])
self.nest_neurons.append(neuron)

threshold = float(node.get("Threshold"))
nest.SetStatus(neuron, {'V_th' : threshold})

self.setup_neuron_parameters(neuron)

e in network.edges():

edge = network.get_edge(e[@], e[1])

pre = self.nest_neurons[neurons_dict[e[€@]]]
post = self.nest_neurons[neurons_dict[e[1]]]
w = float(edge.get("Weight"))

d = float(edge.get("Delay"))

if (self.config["stdp"] == False):

nest.Connect(pre, post, syn_spec={'weight' : w, 'delay'

else:

nest.Connect(pre, post, syn_spec={'weight' : w, 'delay'

29 Apr 2022 Vetter @ Salishan Conf

: d})

: d,

"model™:

"stdp_synapse"})



;!_(,OAK RIDGE

National Laboratory

Architecture and Integration




Architectures

29 Apr 2022

Design chiplet for SNN that can be easily
integrated with contemporary
technologies

— Heterogeneous integration

— Compatible with existing processes
Extensive advances in chiplets, packaging,
and heterogeneous integration recently
— Open Domain-Specific Architecture

— TSMC SolC-CoW, Intel Foveros

Using open toolchain and architecture to
explore chiplet designs: RISC-V, Openlane

Simulate/emulate with existing simulators
like Gem5 and Aladdin

Initial work with uCaspian boards

RISC

N R neuromorphic
i CO-processor

peHTg 11100 g
Base Die Lo\
C4 CuBumps = e b D

Standard \ﬂ,u( !

Package Trace
Package Package Substrate
Bl 00O MP OO0 00000000 WS OO

Circuit Board

Optional HBM Hem oram oie | 1111 TSV
RAMDies Hem pram oie |1 111
? - , ) s
HeM pRAM Die | 111 Silicon interposer Optligig)ilénp e
Ham oram Die | 1111 ; e ;

Short Wires

Figure 21. An example showing the use of 2D and 3D interconnections (courtesy TSMC)
[IEEE HIR 2021]

¢

@ cembd
OBALADDIN

Vetter @ Salishan Conf
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Architecture for Smart Pixel Driver

e CMS Experiment from FemilLab: 25ns latency,
~1B detector channels

— Active ongoing effort to design

customized ASIC for data acquisition and
compression

— Active ongoing effort to establish POR ML
method on particle trajectory
reconstruction

e Establish baseline specs (PPA) in computing
intensity required using POR ML method

e work with Algorithms team to explore SNN
techniques to better meet other constraints

* Investigate and define integration between
ML accelerator cores and von-Neumann cores

astput: | (Moae, 6] |

st B ERE R E

<= (LQX.y.2,8,0h

cotdpna i
=2 — =2
T THOH] Em T THOH]
;m.—
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x 15 1 am o oa 1 F ]
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Tracking Integration and Packaging Technology
From 2.5D to 3D and 3D+

= 10-100X improvement / generation in data speed and bandwidth density

2D I 2.5D I 3D I 3D+
On-board, pack- | SIP, EMIB, passive | ODI, CoWoS, active Hybrid bond,

PY A dvan C ed pa Ckagin g is CI ea rly On e to-package interposer, CoW, etc. interposer, etc. | S:)J(:l;:t:c.
of the main technology drivers of

U
FOVEROS

P
=
[7] TECHNOLOGY %
c
. . 8 EMBEDDED i
semiconauctor scaling soon 5 st
o Bump density - > 10,000/mm?
q:’ u"u Energy/bit — < 0.05 pJ/bit
[ STANDARD Pl Bump pitch - 50-25 um
o PACKAGE .’l Bump density - 400-1,600/mm?
E | B P—— Energy/bit - 0.15 pJ/bit
ump pitch - 55-36 um T st
;B s
e P y - 330-772/mm: ]

 Underlying technology is the main T e

Energy/bit — 1.7 pJ/bit

uncertainty for neuromorphic Eneroy Effcioncy
accelerator

Roadmap of 3D Packaging

= From 2010 to 2030: bandwidth density (Gbps/mm-3) from <10 to 109,
energy efficiency (pJ/bit) from >1 to 0.01

‘E o = "TSV;B/SCPDN) »0'1 ' Projected.
SPIKING NON-SPIKING E wo |3 2x/2 years = P b o
E 1E+06 % /‘L&D\?\iﬂ/i T:.;oo <§
. - .. é AR5 ;E < O waw® = % g:
CMOS-friendly (Loihi) latency |traditional GPU/FPGA/NN B 10 |42 W < g
DIGITAL ) g G TS L 2
and energy constraints accelerators £ o[z 2 Ll =5 S
é o % [5 < ivvpbumb assembly to SE - g
interface to the rest of world, . o B -
ANALOG - Interface, repeatability D g SMT assembly to PCB : 3
repeatablllty lE‘DDNQO ) 1995 2000 2005 2010 2015 2020 2025 )O;Omoo
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Devices and Circuits
Materials
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Materials, Devices, Circuits

Goals

— Harness the interplay between mobile defects (ions and vacancies) and electronic properties to realize
functional elements for spiking and non-spiking analog neuromorphic networks

— Create and validate small network models; generate device and network data for co-design
— Understand and mitigate radiation induced degradation mechanisms at the device and circuit level

Materials

“uoisaype

ge)
o
-
o
S
H.

Devices

1) ECRAM

& © lon

Drain

0?2 anions
exchange

.o. _r"channel

vacancies

2) ReRAM _

N

Ta (15 nm)

TaOy (5-10 nm)

Circuits




Experimental TaOx ReRAM Conductance Distributions

Developed TaOx 2000hm spacing between resistance targets
1000hm spread between R i, Riax

weight mapping and
programming routine
for optimizing
inference accuracy

# Devices

2 4 6 8 10 12 14 16 18 20
Resistance (kQ)

Resulting conductance distribution

Ta (15 nm)

TaOy
(5-10 nm)

# Devices

50 100 150 200 250 300 350 400 %(H@Q{IDGEOO
National Laboratory
Conductance (uS)



Kelvin Probe Force Microscopy (KPFM) on PB thin films

4.96 nN 17.48 mvV

768.97 pm

2" pass G-Mode /KPFM topo adhesion potential

1ML

0.00 um 0.00 NN 0.00 mV

10*10um

topo adhesion potential

726.15 um 35.60 mN 2.83 mv

4ML

|  Deconvolute

88nm

(s
The principles of the measurement ooomv
procedure in KPFM technique using 0.5*0.5 um

two pass mode o ] ]
Next step: nanoscale ionic effects from dielectric spectroscopy

M.Checa et al, APL, 2021
29 Apr 2022 Vetter @ Salishan Conf 57
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Summary

* Abisko is a new microelectronics codesign project

with the ambitious goals

— Develop better techniques for codesign from
algorithms to devices and materials

— Design Spiking Neural Network chiplet that can be

integrated with contemporary computer
architectures

— Explore new devices and materials for the SNN
chiplet

l({)ﬁ%(GE !I'l Sandia National Laboratories A‘riz&lm il

— University
National Laboratory

— Design language abstractions and runtime support

for SNN chiplet

e Truly interdisciplinary team working across the
stack
e More information
— vetter@computer.org
— https://vetter.github.io

 We are hiring!
— See https://jobs.ornl.gov

— Send an email to me.

29 Apr 2022

Gr HARVARD
UNIVERSITY
gm
Georgia o=
Tech G G

Brooks, David Cao, Kevin Comish, John

Date, Prasanna Fahim, Farah (collaborator) Flynn, Michael

Ghawaly, James (collaborator) Hornick Il, Michael Huber, Joseph

Hysmith, Holland levlev, Anton Kulkarni, Shruti

Lim, Sung-Kyu Liu, Frank(Arch) Maksymovych, Petro (Materials)
Marinella, Matthew Miniskar, Narasinga Rao Ovchinnikova, Olga S.

Schuman, “Katie” (Algo) Sumpter, Bobby Talin, Alec (Devices)

Tallada, Marc Gonzonlas Tran, Nhan (collaborator) Tripathy, D

(Software)

Vetter, Jeffrey S. Wei, Gu-Yeon Young, Aaron

Thanks!

Vetter @ Salishan Conf
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