
© 2022 Arm

Pavel (Pasha) Shamis, Sr. Principal Eng.
Salishan Conference on High-Speed Computing, 
2022

High-performance network 
software for data analytics –
what we’ve learned and what 
is next?
Arm



2 © 2022 Arm

My goals
Try not to brag about the awesome software we built
Share the journey of building communication middleware for data analytics/HPC and 
lessons learned
Share thoughts on the emerging generation of IO and storage hardware and what we 
shell do about the software



3 © 2022 Arm

How it is started …
An ask from USG users for high-performance OpenSHMEM (SHMEM) 
implementation
OpenSHMEM conceptually is a very thin wrapper on to of RDMA 
(Put/get/atomics) hardware abstractions
• Cray got it right – simple API and semantics, lightweight, maps directly on 

hardware
• Users expect a near bare-metal network performance

From MPI developer perspective OpenSHMEM semantics on the low-low 
level is very similar to MPI low-level internal layers
OpenSHMEM is a relatively small community and vendor cost of a stand-
alone product is very high (10s of millions)
• Let’s reuse as much code as we can

OpenSHMEM use-cases look-and-feels like data analytics processing
• Put, get, update, reshuffle, sort/search in memory data structures
• In a fact some people considered to map database semantics on top of 

SHMEM

SHMEM

GasNET

MPI



4 © 2022 Arm

The perfect storm …

LA 
MPI

Mellanox

MXM

Open
MPI

2000 2004

IBM
PAMI

2010

A new 
thing -

UCX

2011 2012

UCCS

A new project based 
on concept and 
ideas from multiple
generation of HPC 
networks stack

• Performance
• Portability
• Scalability
• Efficiency

Modular 
Architecture

APIs, context, 
thread safety, etc.

APIs, software 
infrastructure 
optimizations

Network 
Layers

APIs, Low-level 
optimizations

ORNL



5 © 2022 Arm

Setting the project…
Goals: Performance, portability, 
productization 
Partnership: first meeting participants ORNL, 
Sandia, UTK, IBM, Mellanox
Legal and licensing: BSD3, copyrights, 
company (UCF).
Project Architecture: protocols, transports, 
services, memory
Main use-cases: MPI, SHMEM , potentially 
3rd party languages, storage, data analytics 
Accelerators: GPU as a first-class device
Productization: programming infra, CI, unit 
testing, code review methodology, etc.



6 © 2022 Arm

Progress
Disaggregated 
Datacenter
Go
Active messages with 
zero-copy
Wire-level protocol 
backward compatibility
UCT: Extendable ABI 
interface
SmartNICs
GPU corner cases
Support for new 
network architectures

PoC
API: Blocking RMA, 
some atomics, Blocking 
Send/Receive (tags)
Networks: RDMA 
Verbs,  Vebs “bypass”, 
Cray uGNI, basic shared 
memory

OpenMPI/SHMEM

AI and Data 
Analytics
Python , Java
Active messages
TCP
Extendable ABI 
interface
Performance: more of 
hardware offloads
Multi-GPU, Multi-NIC

Rapids/DASK, Spark, Arrow, 
NCCL, File systems

Mpich, OpenMPI, 
SHMEM*, GasNet, 
Charm++, commercial 
prod

HPC
UCP API  and ABI 
Backward 
Compatibility
API: Non-blocking 
Send/Receive, Stream, 
Atomics
Networks: Devx, 
Multirail
Shared Memory: 
KNEM, CMA, XPMEM
Initial GPU support



7 © 2022 Arm

UCX

Networks

Host Memory: 
x86, Arm, Power 

GPU Memory: 
AMD RoCM, 
NVIDIA CUDA

DPU

Host Memory: 
x86, Arm, Power 

GPU Memory: 
AMD RoCM, 
NVIDIA CUDA

DPU

MPI PGAS

C

High-Performance Universal Data Mover 

ML/AI
Frameworks

Data Analytics Storage DPU

Java Python Go

Storage Storage



8 © 2022 Arm

Convergence is real and it is not just about hardware
“Smart” networks and accelerators is a new normal

SHMEM

GasNET

MPI
The rest of data 

analytics community

HTTP, GRPC, sockets, 
etc.

Ethernet Ether-NOT

Accelerated  Compute“Classical” Compute

Apache
Spark

Apache
Arrow
Rapids
Dask

Arkouda



9 © 2022 Arm

Lessons learned
PoC – proof that you can work together
• Find hardware/software partners that share your LONG-TERM strategy/vision and economic incentives

Who/what will drive the project once you are out of funding or contract expiration? 
• Target multi-market hardware/software solution (HPC, Data analytics, ML, AI, Storage, etc.)

Hardware vs Software
• it is constant negotiation and hardware engineers are NOT always wrong 

Majority of HPC network APIs work mostly for HPC community
• RPC-like  (active messages) or streaming semantics works well for the rest of the world

Collaboration with Linux kernel community
• RDMA-CORE: There is over 15 years' experience in building kernel/user space interfaces

There are less and less people that “speak” C
Architect project for growth and constant change
• You will get API and ABIs wrong  

iterate, extend, and improve while preserving backward compatibility (as long as it makes sense)
• Plan for heterogeneity in processing element, memory, and interconnect

Upstream first
• We are CI maniacs



© 2022 Arm

The next generation of 
IO and storage hardware 
and what we do about 
this ?



11 © 2022 Arm

Datacenter Native System Architecture

Security
Efficiency

TCO

Fixed-function acceleration
“Invisible” Compute

Ho
st

 C
PU

Data Processing

Application

Data Filters
Compression
Encryption

Confidentiality

Typical Server

NIC SS
D

SS
D

SS
D

SS
D

SS
D

PCIe Functions

Virtualization Data Processing

Application

Datacenter Server

DPU CS
D

CS
D

CS
D

CS
D

CS
D

arm arm arm arm arm arm

Data 
Filters

Confidentiality

C E C E CVirtualization

PCIe/CXL/CCIX/Network functions

Ho
st

 C
PU

Computation 
Storage 

DPU



12 © 2022 Arm

CSD deployments: Alibaba PolarDB and Amazon Redshift with AQUA

Alibaba's PolarDB is their hosted relational storage 
service. Accelerated by ScaleFlux CSDs as shown at 
USENIX FAST '20, they claim a 2x performance gain 
over a more traditional architecture.
https://www.usenix.org/conference/fast20/presentation/cao-wei

Redshift is Amazon's relational database service. 
AQUA is an architectural improvement that uses 
CSDs to execute SQL filter instructions.
Claims 10x query performance, and 3x overall better 
performance at the same cost as Redshift without 
AQUA.
https://www.youtube.com/watch?v=0LVyd-kqpdE

https://www.usenix.org/conference/fast20/presentation/cao-wei
https://www.youtube.com/watch?v=0LVyd-kqpdE


13 © 2022 Arm

Computational Storage Potential

Testing setup: AMD Epyc (7401P) with 4 
NGD (4 x Cortex-A53) CSDs attached. All 
workloads dispatched simultaneously.
Two drives can outperform an AMD EPYC 
core on reads, and slightly more than one 
outperforms a single core on writes.
For sufficiently partitionable data an array 
of CSDs could free data concerns from the 
host entirely
SSD ~12W power envelope (including 
storage and 4 cores) vs AMD Epyc (7401P) 
237W/24c ~ 9.8w per core (2 threads)
• U.2 power budget is under 25W
• M.2 power budget is under 9W



14 © 2022 Arm

The Two-Chains Framework
Provides packaging, transfer and execution of injected 
functions (ifuncs) on local and remote processes
• Functions are loaded as dynamic libraries
• Messages contain binary code and data

Fast, lightweight and portable
• Leverages Arm’s instruction and data cache stashing
• Injected functions (ifuncs) are written in regular C code
• Works on local/remote CPUs, DPUs and CSDs

Extension of the UCX framework 
• Works with TCP, Shared Memory, RoCE, IB, etc.

Two-Chains: High Performance Framework for 
Function Injection and Execution, IEEE CLUSTER 2021
UCX Programming Interface for Remote Function 
Injection and Invocation, OpenSHMEM 2021

Two-Chains

DPU work queue API
(Nvidia)

Programming Models
(Active Messages, Function-as-a-Service,

RPC, etc.)

UCX

https://github.com/openucx/ucx-two-chains



15 © 2022 Arm

The Two-Chains Workflow

ldr x1, :got:printf
blr x1

ldr x1, foo$got
ldr x1, [x1, #:got_lo12:fib]
blr x1

patch_asm.py

put

ifunc (code + data) wire protocol

Node A Node B



16 © 2022 Arm

Two-Chains: Performance highlights
Google’s SNAP-like indirect-put network protocol

Hardware optimizations for function/data 
injection (cache stashing, WFE, etc.)
• 92% increase in indirect put injection rate
• 31% reduction in latency
• up to 2.4x improvement in tail latency
• Between 2.5x and 3.8x CPU cycle reduction 

when polling using WFE



17 © 2022 Arm

Pointer Chasing Benchmark

Client

Server

key value
key value
key value
key value

Server

key value
key value
key value
key value

Server

key value
key value
key value
key value

Server
key value
key value
key value
key value

Server
key value
key value
key value
key value

Client

Server

key value
key value
key value
key value

Server

key value
key value
key value
key value

Server

key value
key value
key value
key value

Server
key value
key value
key value
key value

Server
key value
key value
key value
key value

Eureka

Req

Ifunc Remote-get 

Eureka



18 © 2022 Arm

Pointer Chasing Benchmark - Preliminary Results



19 © 2022 Arm

Future Challenges & Opportunities
Security is going to be the main challenge
• Running side-by-side with the “trustzone” of the datacenter
• Partitioning of hardware, isolation, virtualization, trust 

establishment across all elements in distributed system
[1] Confidential Compute Consortium- Veracruz:
https://github.com/veracruz-project/veracruz
[2] Icecap (seL4): https://gitlab.com/arm-
research/security/icecap/icecap

Memory with computing elements may not have application-
class cores
• Realtime and micro-controllers, accelerators, etc.
• What is the right representation of the code
• Minimizing assumption about underlying runtime
[1]Two-Chains: High Performance Framework for Function 
Injection and Execution, IEEE CLUSTER 2021
[2] https://github.com/openucx/ucx-two-chains

PCIe/CXL/CCIX

PCIe/CXL/CCIX functions

TZ

Arm

PCIe 
Switch

Net 
Switch

NIC Ports

Accelerators

Host

User Host App

OS
VM

OS

User Host App

verified 
code

Untrusted 
code 

1 2

DP
U,

 C
SD

, e
tc

.

VM

Hypervisor

Runtime

App1

VM

Runtime

App1

Se
cu

rit
y

Pr
og

ra
m

m
in

g 
m

od
el

s

https://github.com/veracruz-project/veracruz
https://gitlab.com/arm-research/security/icecap/icecap
https://github.com/openucx/ucx-two-chains


20 © 2022 Arm

Acknowledgments
Luis Pena, Jon Hermes, Alexandre Ferreira, Eric Van Hensbergen, Kshitij Sudan, Jason 
Molgaard
Wenbin Lu (SBU)
Steve Poole (LANL)



© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות


