
LLNL-PRES-801486
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Exploiting Spark for HPC Simulation Data:
Taming the Ephemeral Data Explosion
Salishan Conference on High Speed Computing

Ming Jiang
Computer Scientist

April 27, 2022



2
LLNL-PRES-801486

§ Growing interest in applying machine learning (ML) 
to multi-physics simulations on HPC systems
— HPC simulation data can be massive!
— Deploying ML algorithms at that scale is a challenge

§ Big Data frameworks (Apache Spark) offer solution
— Heavily utilized in industry
— Demonstrated scalability … on Big Data clusters

§ How practical is it for HPC users on HPC systems?
— Focus of this research: identify best practices for 

exploiting Spark for massive HPC simulation data

Applying machine learning to HPC simulation data is a challenge



3
LLNL-PRES-801486

§ Arbitrary Lagrangian-Eulerian (ALE) codes
— Used in many scientific and engineering applications
— Vital to DOE/NNSA Stockpile Stewardship Science

§ Problem: ALE codes are difficult to use!
— Suffer from code failures
— Require user intervention
— High time-to-solution

§ Objective: exploit ML to automate ALE codes
— Drastically reduce user time and effort needed to 

produce solutions

ALE simulation codes are vital, but they’re difficult to use!

Mesh Tangling Failures



4
LLNL-PRES-801486

§ We developed a supervised learning framework* to predict ALE simulation failures
— We trained a Random Forest model to predict mesh tangling failures
— For generating training/testing data, we varied initial conditions of simulation
— Bubble Shock simulation training data is 76TB, with over 1 trillion learning examples!

Use ML to avoid failures during ALE simulation runs

Bubble Shock Simulation

Generate 
Training Data

1,044,194,465,960
Learning Examples 

76TB

*[ICMLA 2016]



5
LLNL-PRES-801486

§ Training ML on 76TB of HPC simulation data
— Custom solution
• Write-your-own: parallel-distributed ML algorithm
• One-off solution, good performance, R&D investment

— Off-the-shelf solution
• Big Data framework: Apache Spark
• General solution, good scalability, community supported

Apache Spark supports distributed machine learning at scale

Persist to memory and disk for fast computationSpeed

Rich set of APIs to exploit implicit data parallelismSimplicity

Multiple programming languages and database systemsSupport



6
LLNL-PRES-801486

§ Research in HPC+Spark
— Application integration, performance tuning, I/O frameworks, and scaling Spark
— [HPCAsia 2020]: we distilled a set of best practices for HPC users
• Key finding: data scale matters! Our data is 2-3 orders of magnitude bigger than others!

Using Big Data frameworks in HPC systems is a major challenge!

• Abundant node-local storage

• Hardware optimized for I/O
• Yarn scheduler
• Ethernet networking

Big Data

vs
• Reliance on network storage

• Hardware optimized for MPI
• Slurm scheduler
• Infiniband networking

HPC



7
LLNL-PRES-801486

§ ALE+ML: novel Spark application
— Random Forest
• Supervised learning for failure prediction
• Calling a single, complex function

— Failure mode analysis
• Unsupervised learning using k-means clustering (k=2)
• Composing a pipeline of lightweight functions

Distributed machine learning for ALE+ML application

Create
RDD

Random 
Forest

Create 
DataFrame

Standard 
Scaler

K-Means 
Clustering

Silhouette 
Score

Simulation Random Forest

Mesh Tangling Failures



8
LLNL-PRES-801486

Our Initial Attempt at using Spark for ALE+ML



9
LLNL-PRES-801486

State-of-the-practice recommendations for HPC+Spark

LLNL Catalyst System
Per node: 128GB RAM + 745GB SSD

32 nodes: 27.3TB

Fatal Error: 
out-of-disk

§ Our initial HPC+Spark experiment
— We use Magpie to enable Spark on HPC
• https://github.com/LLNL/magpie

— Random Forest on 32 nodes for up to 2TB data
• Experiments on LLNL Catalyst system

— Original data resides on network storage (Lustre)
• No HDFS or data replication

§ State-of-the-practice recommendations
— No compression
— Persist to node-local storage (SSD)

https://github.com/LLNL/magpie


10
LLNL-PRES-801486

§ Resilient Distributed Dataset (RDD)
— Fundamental data structure in Spark
— Motivated by iterative (multi-pass) algorithms
— Can be persisted (cached) to memory and/or disk

§ Understanding RDD persistence
— “Blessing of persistence”: eliminate redundant I/O
— “Curse of persistence”: ephemeral data explosion
— Fundamental tradeoff between space and time

Data persistence in Spark can lead to ephemeral data explosion

1TB
Original Files

12.6TB
Intermediate Files

• Save intermediate data for re-use
• Speedup over Hadoop: 10x – 100x



11
LLNL-PRES-801486

§ 2x: data type inflexibility
— 4-byte floats in storage become 8-byte floats in Spark

§ ~2x: Random Forest implementation
— Original and intermediate data are persisted to memory/disk

§ ~3x: Java object serialization overhead
— Data is serialized when RDD files are written to disk

§ Caveat: x-factor is both data and algorithm dependent

Where does the data explosion come from in Spark?

𝑥_𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑆𝑝𝑎𝑟𝑘_𝑑𝑖𝑠𝑘_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒

=
12.6𝑇𝐵
1𝑇𝐵

= 12.6𝑥



12
LLNL-PRES-801486

§ HPC environments are restrictive
— Adding new hardware is not practical
— Customizing Spark software is not practical

§ What options are available to HPC users?
— Reduce data by compressing RDDs
— Use network storage to avoid out-of-disk errors

§ Unfortunately, the state-of-the-practice 
recommends against using these options!
— Spark documentation: https://spark.apache.org
— Current literature in HPC+Spark

What can HPC users do about Spark data explosions?

https://spark.apache.org/


13
LLNL-PRES-801486

§ We distilled our results into a set of best practices
— How to exploit Spark on massive HPC simulation data
— Novelty: these best practices are in direct contrast to 

prevailing recommendations

§ We focus on user-configurable options in Spark
— Rather than customizations to Spark itself
— Advantage: general and applicable across different 

Spark versions/configurations

We present best practices to tame the ephemeral data explosion

Turn on 
compression

Use hybrid 
strategy

Increase 
block sizeBe

st
 P

ra
ct

ice
s

State-of-the-practice ideal for data small enough 
to fit in memory or node-local storage



14
LLNL-PRES-801486

Our Evaluation Results of these Best Practices



15
LLNL-PRES-801486

§ RDD compression is disabled by default
— Prevailing view: noticeable runtime cost with 

little to no benefit
— We enabled RDD compression and using 

different compressors (LZ4 vs ZStd)

Config option #1: enable RDD compression with ZStd (level-1)

spark.rdd.compress = true
spark.io.compression.codec = zstd

Default LZ4 ZStd % change

Runtime 1.5h 1.6h 1.8h +20%

X-factor 12.6x 4.1x 1.7x -87%



16
LLNL-PRES-801486

§ Spark scratch space for intermediate files
— SSD: local and fast, but limited space
— Lustre: shared and slow, but unlimited space

§ We introduce hybrid strategy
— Lesser-known feature: Spark accepts 

comma-separated list for scratch directories
— We can combine SSD and Lustre in a round-

robin fashion

Config option #2: use hybrid strategy for Spark scratch space

spark.local.dir = /ssd/dirspark.local.dir = /lustre/dirspark.local.dir = /ssd/dir,/lustre/dir

SSD SSD
RDD-LZ4

Lustre Lustre
RDD-LZ4

Runtime 1.5h 1.6h 3.6h 2.2h

X-factor 12.6x 4.1x 3.9x 2.8x

* LLNL Lustre uses ZFS with transparent compression



17
LLNL-PRES-801486

§ Partitioning data into blocks has two effects
— Number/size of Spark intermediate files
— Number of Spark tasks

§ File count/size dominates performance
— Lustre I/O is a known bottleneck
— Lustre performs better with fewer, larger files

§ We confirmed that Spark controls Lustre 
block size through fs.local.block.size

Config option #3: increase block size for network storage persist

fs.local.block.size = 134217728

Lustre Performance
✓ Good for large file I/O

✕ Bad for many small file I/O



18
LLNL-PRES-801486

We successfully trained RF model on 76TB of data in 12.5 hours!

Memory fills as 
data is read from 

Lustre and 
persisted (stage 2) 

Once memory fills 
up, SSD begins to 

fill as well
(stage 5) 

Random Forest 
regression with 
default depth=4

(stages 6-13) 



19
LLNL-PRES-801486

Enable ML experiments with data sampling and class imbalance

Fail Non-fail Overall

1TB 0.266 0.0432 0.192

2TB 0.232 0.0368 0.166

4TB 0.213 0.0320 0.152

8TB 0.211 0.0294 0.152

16TB 0.209 0.0287 0.149

32TB 0.208 0.0288 0.149

Class 
Imbalance

Non-fail RMSE 
0.0001

Fail RMSE 
0.575

Overall RMSE 
0.002

RF

Training Data
40TB

Testing Data
36TB

Full Data
76TB

Data Sampling Strategies
1. Sub-sample simulation variations
2. Sub-sample majority class (non-fails)



20
LLNL-PRES-801486

Failure mode analysis using k-means clustering

10TB
40 nodes

20TB
80 nodes

40TB
160 nodes

Runtime 20.2h 21.7h 23.5h

X-factor 1.33x 1.34x 1.35x

§ Failure mode analysis pipeline
— Did not include persists in-between function calls
— Much smaller x-factor than Random Forest

§ Comparing current practice with our approach
— Negligible runtime difference
— Reduce space requirements up to 30%



21
LLNL-PRES-801486

We successfully performed failure analysis on 40TB of data

Memory fills as 
data is read from 

Lustre and 
persisted (stage 2) 

Data 
standardization

(stages 3-7) 

K-means 
clustering for 20 

iterations
(stages 8-49)

Cluster quality 
evaluation for 

Silhouette score 
(stages 50-53)



22
LLNL-PRES-801486

More data improves clustering with different failure modes

4TB 10TB 20TB 40TB

Silhouette Score 0.183 0.239 0.837 0.852

Silhouette score, a measure of cluster 
consistency, increases with more data!



23
LLNL-PRES-801486

Discussion: lessons learned from running HPC+Spark at scale

Data 
Persistence

Reduce redundant 
I/O for multi-pass 
computations in 

Spark

Can lead to 
ephemeral data 
explosion: more 
than 12x for RF

Compression

Overhead from 
compression are 
compensated by 

I/O benefits

Compressed RDDs 
more likely to fit 

on node-local 
storage

Network 
Storage

Use hybrid 
strategy between 

node-local and 
network storage

Increase block 
size to improve 

network storage 
performance 

ML for ALE

Sample training 
data to reduce 
distributional 
skew of labels

Non-failures form 
one mode, but 
failures form 

multiple modes



24
LLNL-PRES-801486

§ ML-driven simulations are on the rise
— ALE+ML application produced over a trillion learning examples

§ Spark offers off-the-shelf solution for HPC simulation data
— Curse of persistence can lead to ephemeral data explosion
— State-of-the-practice recommendations are inadequate

§ Best practices for exploiting Spark for HPC simulation data
1. Enable RDD compression with ZStd (level-1)
2. Utilize hybrid strategy for Spark scratch space
3. Increase block size for network storage persist

Conclusion: Spark can be tamed for massive HPC simulation data

76TB



Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United 
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, 
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

[ICMLA 2016]
M. Jiang, B. Gallagher, J. Kallman, and D. Laney, “A Supervised Learning Framework 
for Arbitrary Lagrangian-Eulerian Simulations,” IEEE International Conference on 
Machine Learning and Applications (ICMLA), pp. 977–982, 2016.

[HPCAsia 2020]
M. Jiang, B. Gallagher, A. Chu, G. Abdulla, and T. Bender, “Exploiting Spark for HPC 
Simulation Data: Taming the Ephemeral Data Explosion,” International Conference on 
High Performance Computing in Asia-Pacific Region (HPCAsia), pp. 150–160, 2020.


