
BEE: Build and Execute Environment
A Workflow Orchestration System

Manage Multi-step Simulations on
HPC & Cloud Platforms

Patricia Grubel
Salishan Conference on High Speed Computing

April 28, 2022

LA-UR-22-23300

BEE Team

Tim Randles (PI)
Steven Anaya
Rusty Davis
Patricia Grubel
Qiang Guan
Jake Tronge

Alumni
Paul Bryant
Jieyang Chen
Ragini Gupta
Allen McPherson
Li-Ta Lo
Quincy Wofford

Contact: bee-dev@lanl.gov

2

mailto:bee-dev@lanl.gov

BEE: A Workflow Orchestration System
§ Exascale Computing Project (ECP)

§ HPC Container Support
– Configurable support for HPC - Charliecloud and Singularity Container Runtimes

§ Supports Multiple Compute Resources
– HPC and Cloud
– Enables high resource usability

§ Designed for HPC simulations

§ Open Standard Workflow Specification: Common Workflow Language (CWL)

§ Automation
– Platform-related setup, configuration and launching
– Avoid learning arcane technical details of HPC resource managers

§ No privileged access required
– Any user can use on HPC platform of their choice

§ Reproducible Workflows
– Complex scientific workflows can be archived, share metadata, re-run

3

BEE: Internals
§ Python 3

– Portable across Linux, OS X, Windows
– Modular Design – Abstract Classes for Major Components

• Abstract interfaces define each component’s API

• Drivers implement API for specific technology (can easily add new technologies)
• Support for using different Graph Database (Neo4j)
• Support for multiple Container Runtimes (Charliecloud, Singularity)

• Support for Multiple Workload Managers (Slurm, LSF, PBS, Torque/Moab…)

§ RESTful API’s – Main BEE components expose REST endpoints
– Easy to enhance and extend new services

§ Common Workflow Language (CWL)
– Open standard, many tools already exist
– BEE extensions for better HPC support

• Automatic Setup of HPC Requirements
• MPI requirement extensions

§ Neo4j - Graph database
– Manage workflow and metadata
– DAG allows workflow execution
– Archive workflow & artifacts

4

BEE: Components for HPC

Compute Resource

BeeClient

Workload
Manager

BeeWorkflowManager

Neo4j
graph

DB

BeeTaskManager

Cypher interface

REST interface BeeScheduler

5

BEE Client
§ Allows user to:
– Add, start, pause, re-run, or cancel workflows
– View list of workflows (archived, running or pending)
– Visualize DAG – shows dependencies & task states
– Get updates
– Setup config

6

Neo4j - Graph Database (GDB)
§ Manage Workflow

– Build Workflow DAG monitors dependencies
– Visualize DAG
– Metadata during run – task state, job id …
– Sends ready tasks to WF Manager

§ Archive Workflow
– Workflow metadata - what cluster, cluster job ids, status, times (submit, start, compute)
– Provenance - ability to archive the workflow

• Captures container UUID, input decks, run commands, checkpoint file location
• Rerun workflows

• Clone workflows - copy, reset data and go
– Resiliency – true state of the BEE workflow is in the database

• Recovery from outages

• Component restart - components designed to continue using database metadata
– Checkpoint / Restart metadata

7

BEE Workflow Manager

§ Manages Interactions between all components
§ Parses CWL sends WF to GDB
§ Receives Ready Tasks
§ Sends Ready Tasks to the Task Manager
§ Receives job information from TM and relays

state to GDB
§ Archives Completed Workflows

8

BEE Task Manager
§ Receives ready tasks from WF Manager
§ Pre-processes Build Requirements
– Container pulls, builds or copies as defined in task

requirements and as needed

§ Submits job as defined by each task
• Uses containerized applications or applications installed

on the system as specified by user CWL

§ Keeps track of active tasks
§ Queries job states
§ Sends updates to WF Manager

9

BEE Scheduler

§ Designed to be extensible, easy to configure for
user workflows

§ To be implemented
– Allow for users to take advantage of cloud resources

or other HPC systems when load is high
– Choose between multiple Task Managers when

available [not implemented yet]

10

CLAMR Workflow Example
§ CLAMR

– An open source LANL mini-app
– Simulates shallow water equations
– Performs hydrodynamic cell-based adaptive mesh refinement (AMR)
– Intended as a testbed for hybrid algorithm development using MPI and OpenCL

CLAMR Visualization

https://github.com/lanl/CLAMR

11

https://github.com/lanl/CLAMR

CLAMR Workflow CWL
cwlVersion: v1.0

inputs:
grid_resolution: int
max_levesl: int
…

outputs:
clamr_stdout:

type: File:
outputSource: clamr/clamr_stdout

…

steps:
clamr:

run: clamr.cwl
in:

grid_res: grid_resolution
max_levels: max_levels
…

out: [clamr_stdout, outdir, time_log]
hints: DockerRequirement

copyContainer:: “…/clamr.tar.gz”

ffmpeg :
run: ffmpeg.cwl
in:

input_format: input_format
ffmpeg_input: clamr/outdir

…
out: [movie]

cwlVersion: v1.0

baseCommand: /clamr/CLAMRmaster/clamr_cpuonly
stdout: clamr_stdout.txt
inputs:

amr_type:
type: string?
inputBinding:

prefix: -A
grid_res:

type: int?
inputBinding:

prefix: -n
…

outputs:
outdir:

type: Directory
outputBinding:

glob: $HOME/graphics_output/graph%05d.png
…

clamr.cwl
clamr_wf.cwl

12

CLAMR Workflow CWL
cwlVersion: v1.0

inputs:
grid_resolution: int
max_levesl: int
…

outputs:
…
clamr_movie:

type: File
outputSource: ffmpeg/movie

steps:
clamr:

run: clamr.cwl
in:

grid_res: grid_resolution
max_levels: max_levels
…

out: [clamr_stdout, outdir, time_log]
hints: DockerRequirement

copyContainer:: “…/clamr.tar.gz”

ffmpeg :
run: ffmpeg.cwl
in:

input_format: input_format
ffmpeg_input: clamr/outdir

…
out: [movie]

cwlVersion: v1.0

baseCommand: ffmpeg -y
inputs:

input_format:
type: string?
inputBinding:

prefix: -f
position: 1

ffmpeg_input:
type: Directory
inputBinding:

prefix: -i
position:2
valueFrom: $(self.path + “/graph%5d.png”)

…
outputs:

movie:
type: File
outputBinding:

glob: $(inputs.output_file)
glob: CLAMR_movie.mp4

…

ffmpeg.cwl
clamr_wf.cwl

13

CLAMR Workflow CWL

Inputs for CLAMR
/clamr/CLAMR-master/clamr_cpuonly -n 32 -l 3 -t 5000 -i 10 -g 25 -G png

grid_resolution: 32
max_levels: 3
time_steps: 5000
steps_between_outputs: 10
steps_between_graphics: 25
graphics_type: png

Inputs for FFMPEG
ffmpeg -f image2 -r 12 -s 800x800 -pix_fmt yuv420p $HOME/CLAMR_movie.mp4

input_format: image2
frame_rate: 12
frame_size: 800x800
pixel_format: yuv420p
output_filename: $HOME/CLAMR_movie.mp4

clamr_job.yml

14

CLAMR neo4j Workflow

15

BEEflow

BEEflow
Workflow
manager

Task
manager

slurmrestd

Graph
database

Config
exists?

Write
reasonable

defaults

Read config

Launch

Yes

No

§ Manages configuration file complexity
§ Launches BEE component servers

Scheduler

16

BEE Configuration File
§ Orchestrates BEE components

BEE CONFIGURATION FILE
[DEFAULT]
bee_workdir = /users/<username>/.beeflow
workload_scheduler = Slurm
use_archive = True

[slurmrestd]
slurm_socket = /tmp/slurm_<username>_127.sock

[workflow_manager]
listen_port = 5827

[task_manager]
listen_port = 5877
container_runtime = Charliecloud

[graphdb]
hostname = localhost
dbpass = password
bolt_port = 7718
http_port = 7509
https_port = 7504
gdb_image = /usr/projects/beedev/neo4j-3-5-17-ch.tar.gz
gdb_image_mntdir = /tmp/<username>

[builder]
container_archive = /yellow/users/<username>/.beeflow/container_archive
deployed_image_root = /var/tmp/<username>/beeflow_deployed_containers

17

Compute Resource
Prior to starting workflow beeflow starts up services

Current BEE Workflow

sim.cwl

Simulation(s) steps
inputs, outputs,
dependencies,
requirements

BeeClient

sim.cwl

Start Workflow

Neo4j
graph

DB
Parse &

Load CWL

BeeWorkflow
Manager

BeeScheduler

Ready
tasks

BeeTask
Manager

Submit &
Monitor Jobs

Creates
DAG

tasks

Workload
Manager

Task metadata
updates

Job
updates

Job
updates

Select resource
Submit Workflow
Request updates

Pre-process
build

*

Completed Workflow is archived

update

18

Status and Future Plans
§ Current Status
– Public Release
– GUI client runs on desktop/laptop – select resource
– BEE components run on the resource (HPC/cloud)

§ Upcoming Milestones
– Restart/Checkpoint
– Multiple Workflow Management

§ Future
– Manage workflow to choose platform
– Based on load and/or availability, hardware, or user-

specified constraints
19

§ BeeFlow: A Workflow Management System for In Situ
Processing across HPC and Cloud Systems, ICDCS, 2018

§ Build and execution environment (BEE): an encapsulated
environment enabling HPC applications running everywhere,
IEEE BigData, 2018

§ BeeSwarm: Enabling Parallel Scaling Performance
Measurement in Continuous Integration for HPC Applications,
ASE, 2021

§ BEE Orchestrator: Running Complex Scientific Workflows on
Multiple Systems, HiPC, 2021

20

https://ieeexplore.ieee.org/abstract/document/8416366
https://ieeexplore.ieee.org/document/8622572

21

