
GPU ACCLERATED GRAPH ANALYTICS AND GNN ON HUGE DATASETS

JOE EATON

SALISHAN CONFERENCE, 4/27/2022

3 KEY TAKEAWAYS
Big Announcements

See the Recorded GTC talk : S41407 – State of cuGraph

 Massive Graph Support
 cuGraph has support for massive size graph over thousands of GPUs
 Ease of programming new algorithms with graph primitives
 Graph construction and feature engineering benefit from cuDF

 Property Graphs
 cuGraph supports property graph model (aka heterogeneous graphs, knowledge graphs)
 Very useful in real-world applications, commonly asked for by our customers

 Supporting GNNs
 cuGraph is going all-in on GNN support in DGL and PyG
 DGL 1.0 planned to include cuGraph accelerated graph storage and sampling
 Combined with nvTabular for lambdaOps, and GPU accelerated parameter servers for features
 Example notebooks using DGL for realistic workflows end-to-end available from Joy of Cooking team

CUGRAPH VISION STATEMENT

Make graph analysis ubiquitous to the point that
users just think in terms of analysis and not

technologies or frameworks.

At the top layer, we work to obfuscate how data is stored and processed.
A data scientist can just select an algorithms without concern for underlying structures.

As you move down the stack, greater understanding of graphs and data structures is needed
And more control is given to the user

THE NEW CUGRAPH STACK
The data scientist now has many paths to cugraph

libcugraph
(C++/CUDA)

cugraph
(python)

pylibcugraph
(cython)

cudf dask

libcugraph_c
(C algo calls, opaque type-erased parameters)

CuPy
(v10.0)

Julia
(proposed)

R
(proposed)

libcugraph pylibcugraph cugraph cuGraph conda
packages

cugraph-ops
(C++/CUDA – CLOSED SOURCE) - Used in DGL support

Julia and R support are
under consideration, but
waiting for community
feedback on interest

Graph Primitives

GRAPH PRIMITIVES

 Goal: To make high-performance Multi-Node Multi-GPU
implementations ubiquitous to the point that algorithm developers
just think in terms of operations on graphs, vertices, and edges.

 Hide complexity of 2D distributed data
 Each GPU gets a tile of vertices
 Each GPU gets multiple tiles of the adjacency matrix

 Hide complexity of using both CSR and DCSR structures
 CSR is effective when (local-)vertex degree >> 1
 DCSR is effective when (local-)vertex degree << 1 (hypersparse)
 A tile has a part of the edge list in CSR (for high-degree vertices) and the

remaining part in DCSR (for low-degree vertices, # degrees << # GPUs in
the same column)

 Different kernels applied based on vertex degrees

Users write the same code for SG (no partitioning) as
for MNMG (complex 2D partitioning)

GRAPH PRIMITIVES

 Graph level primitives:
 coarsen, extract induced subgraphs, symmetrize, transpose, count self-loops & multi-edges, compute (weighted-)in/out-degrees

 Vertex & edge level primitives:
 Visit all the edges:

 apply a user provided functor to each edge, reduce the functor outputs to a single number (e.g. sum the edge weights of a graph)

 Visit all the vertices:
 Apply a user provided functor to each vertex, reduce the functor outputs to a single number (e.g. test PageRank convergence)

 Visit all the neighbors of each vertex:
 apply a user provided functor to each neighbor, reduce the functor output to a single vertex property value (e.g. PageRanks, Katz centrality, HITS)

 Additional primitives for more complex patterns
 More primitives to be added to support more graph analytics

 Multiple analytics have been re-implemented using graph primitives:
 PageRank, Katz Centrality, HITS, BFS, SSSP, WCC, K-core, Louvain

 See https://github.com/rapidsai/cugraph/tree/branch-22.04/cpp/include/cugraph/prims for the complete list of primitives

https://github.com/rapidsai/cugraph/tree/branch-22.04/cpp/include/cugraph/prims

GRAPH PRIMITIVES
Examples

�
𝑛𝑛𝑖𝑖∈𝑁𝑁𝑖𝑖𝑖𝑖(𝑣𝑣)

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑖𝑖∈𝑁𝑁𝑖𝑖𝑖𝑖(𝑣𝑣)

𝑡𝑡𝑐𝑐 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

1 − 𝑝𝑝𝑎𝑎𝑐𝑐𝑎𝑝𝑝
𝑉𝑉

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑖𝑖
𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝𝑖𝑖)

* The core part to implement PageRank for 1000+ GPUs.
* You can tweak this code to implement analytics with similar patterns
(e.g. Katz centrality, HITS, or something you invented).

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣 = �
𝑛𝑛𝑖𝑖∈𝑁𝑁𝑖𝑖𝑖𝑖(𝑣𝑣)

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑖𝑖 ∗ 𝑤𝑤 ∗ 𝑝𝑝𝑎𝑎𝑐𝑐𝑎𝑝𝑝
𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝𝑖𝑖)

+
1 − 𝑝𝑝𝑎𝑎𝑐𝑐𝑎𝑝𝑝

𝑉𝑉

Look for upcoming BLOG Series

OVER 1 TRILLION EDGES !!!
cuGraph Scaling to Massive Scale

cuGraph scales smoothly from small graphs on 1 GPU to massive
graphs with trillions of edges on 2,048 GPUs

• Customer in FSI, ISV, Retail, and Cyber can easily have 10s of
millions of customers (nodes), producing trillions of transactions
(edges).

• Being able to get answers in a matter of seconds regardless of
graph scale if important

• PageRank: Scale 36 (1.1 trillion directed edges) in 19.3 seconds
(0.66 seconds per iteration, 2,048 GPUs)

• Louvain: Scale 35 (0.55 trillion undirected edges or 1.1 trillion
directed edges) in 336 seconds (1024 GPUs)

• Large scale testing just started
• More analytics will be supported at 1000+ GPU scale
• Continuous optimization for both memory usage and performance

scalability

RMAT Data Generator
using Graph500 Specs

Edge Factor of 16

GPUs
Scale

Comparison
One Trillion Edges: Graph Processing at Facebook-Scale paper

“…. we were able to execute PageRank on over a trillion social connections in less than 3 minutes per
iteration with only 200 machines.”

AUTOMATED MNMG TESTING AND BENCHMARKING USING THE PYTHON API
cuGraph Scaling to Massive Scale, tested nightly

 Running on cluster across 32 GPUs, nightly or on-demand

 Shared MNMG test/benchmark infra is portable across similar
cluster configurations
 Open source infra: https://github.com/rapidsai/multi-gpu-tools

 Includes both MNMG functional testing and benchmark runs

 Reports generated and shared with team over Slack
 Updates a shared database using asvdb to leverage ASV

frontend for interactive plots
 Various reports can be generated from asvdb API: google

sheets, CSV, etc.

PageRank performance over several commits

Property Graphs

PROPERTY GRAPH
Added in release 21.12

 Prior to 21.12, cugraph users were limited to creating graphs from source and destination vertices, and a single (optional) numeric
weight value for each edge.

 …but real data can contain numerous attributes of various types on both vertices and edges
 Being able to store, access, and process attributes is important

 Property Graphs offer this ability, and are critical for supporting Heterogenous graph in GNNs

 Note: this is not proposal to support a graph database or even a graph query language

source destination weight
33 0 3.14
33 18 1.0
18 0 31.14
0 2 4.0
0 2 11.0
18 2 13.14

PROPERTY GRAPH MODEL
Added in release 21.12

 Property Graphs offer the ability to load graph data containing multiple, heterogeneous attributes on items that represent vertices
and edges.

 Attributes can then be used:
 as a means to filter or select certain edges and/or vertices for further analysis using graph analytics
 as weight values for graph algorithms that consider edge weights
 as data that can be added to graph algorithm results for use by client applications (e.g. GNN training)

PROPERTY GRAPH

 Example: use a Property Graph to load various datasets as edges and
vertices with attributes, use the Property Graph API to extract different
graphs based on attributes to run analysis.

PROPERTY GRAPH

 Example: use a Property Graph to load the Zachary Karate Club dataset,
use Louvain to find the two primary partitions, use Pagerank to find the top
3 influential vertices in each partition.

https://data.dgl.ai/tutorial/img/karate-club.png

Look for BLOG on Property Graphs in April 2022

GNN Support

GNN WITH CUGRAPH AND DGL
FILL THE GAP IN BETWEEN SAMPLING AND TRAINING

 Motivation:
Existing frameworks do sampling on CPUs and train on
GPUs. it is time-consuming due to slow memory bandwidth
and copies between host and device.

 Avoid moving data (number of epochs X batch) between GPUs
and CPUs in the training loop

 Sampling and training has closer relationship than data
processing, has to be GPU accelerated as well

GPU ACCELERATED RANDOM WALK
Common Sampling Method

 Graph Sampling can consume 50 – 80% of training time

 cuGraph has been working on expanding the list of graph sampling algorithms and
working to have the algorithms support multiple seeds in batches
 Egonet
 Random Walk
 Node2Vec
 Neighborhood

cuGraph RandomWalk vs DGL RandomWalk with various number of seeds

MFG
1

ROLE OF CUGRAPH-OPS

 Neighborhood sampling calls to create Message Flow Graphs

MFG
0

MFG
k...

MFG DGL
Blocks

Training
pytorch

Cugraph-ops is a library that is composed of highly optimized and
performant primitives associated with GNNs and related graph
operations, such as training, sampling and inference.
Currently, we have random walk, neighborhood sampling, and in
the future we will support aggregation functions as well.

Note: Currently we support DGL, will also support PyG in the future.

Current workflow

FUTURE WORK

Great to connect with NeptuneML for graph analytics and accelerated DGL

ENGAGEMENTS

MEMGRAPH ARANGODB

cuGraph added in
Memgraph Advanced Graph Extensions

(MAGE)
https://github.com/memgraph/mage

https://medium.com/nvidia-
ai/how-to-deploy-almost-any-
pytorch-geometric-model-on-

nvidias-triton-inference-server-
with-an-218d0c0c679c

If you like cuGraph, please give us a star on GitHub https://github.com/rapidsai/cugraph

Any issues, please file a GitHub issue: https://github.com/rapidsai/cugraph/issues

Connect with the Experts session on cuGraph – CWE4175

Thank You!

https://github.com/rapidsai/cugraph
https://github.com/rapidsai/cugraph/issues

	GPU Acclerated Graph Analytics and GNN on Huge DataSets
	3 Key Takeaways
	cuGraph Vision Statement
	The new Cugraph stack
	Slide Number 5
	Graph Primitives
	Graph Primitives
	Graph primitives
	Over 1 TRILLION EDGES !!!
	Automated MNMG testing and benchmarking USING the python API
	Slide Number 11
	Property Graph
	Property Graph Model
	Property Graph
	Property Graph
	Slide Number 16
	GNN WITH CUGRAPH AND DGL
	GPU Accelerated Random Walk
	Role of cugraph-ops
	Future Work
	Engagements
	Slide Number 22

