How probabilistic neuromorphic computing may impact scientific computing applications

Brad Aimone

jbaimon@sandia.gov

How probabilistic neuromorphic computing may impact scientific computing applications

Brad Aimone

jbaimon@sandia.gov

Neuromorphic computing is an evolving field

Aimone, Advanced Intelligent Systems, 2021

Neuromorphic today and tomorrow: impact of neuromorphic in probabilistic scientific computing

Part 3 - Future Probabilistic COINFLIPS Architecture

Part 2 - Neuromorphic Mini-Apps to understand impact on HPC

Neuromorphic hardware shows advantages for probabilistic algorithms
Part 1

COINFLIPS

Darby Smith

Neuromorphic scaling advantages for

 energy-efficient random walk computationsL. Darby Smitho, Aaron L. Hill. Leah E. Reeder, Brian C. Franke, Richard B. Lehoucq, Ojas Parekh William Severa and James B. Aimone $0=$

Neuromorphic algorithm can simulate random

 walks

Leaky Integrate and Fire Neuron
timestep $=1$

We can identify a neuromorphic advantage for simulating random walks

We define a neuromorphic advantage as an algorithm that shows a demonstrable advantage
in terms of one resource (e.g., energy) while exhibiting comparable scaling in other resources
(e.g., time).

Neuromorphic Mini-Apps to understand long-term value for HPC
Part 2

Will this translate to real world impact?

Random walks on neuromorphic
(Smith et al., 2022)

- Brownian motion
- 1000's of particles
- 100's of cells
- 100's of timesteps
- 1 neuromorphic chip

SPARTA simulation of Mir space station (Michael Gallis, Sandia)

- Gas physics
- 1.6 Billion particles
- 10 million cells
- 500,000 timesteps
- 2048 Xeon cores

Why Mini-Apps for Neuromorphic?

- From Heroux et al., 2009: "there is a middle ground for small, selfcontained programs that, like benchmarks, contain the performanceintensive computations of a large-scale application, but are large enough to also contain the context of those computations."

NMC systems have considerable uncertainty at algorithm level

These Mini-Apps would enable:

- Interaction with external research communities
- Simulators
- Early node architecture studies
- Network scaling studies
- New language and programming models
- Compiler tuning

Conventional systems have less uncertainty at algorithm and

Conventional and Neuromorphic Mini-Apps

Fugu addresses two key challenges of neuromorphic programming

Composability

Deploying applications on neuromorphic hardware requires implementing algorithms within neural circuits

- Need to be able to build applications from well designed kernels
- Need to take advantage of features offered by spiking neuron model

Portability

Programming neuromorphic platforms requires a graph of neurons (nodes) and synapses (edges)

- Need to represent neural algorithms in common graph format
- Need ability to translate graph into backend specific constraints

Neural Sparse Coding

Example Results -
Sparse Coding or Sparse Dictionary Learning

- Method of modeling data by decomposing it into sparse linear combinations of elements of a given overcomplete basis set
- On neuromorphic, the LASSO (least absolute shrinkage and selection operator) computation for sparse coding can be approximated with the spike-based algorithm LCA (locally competitive algorithm)
- Implemented as rate-coded neurons with inhibitory connections between competing dictionary elements

Parameterization	Size of image, Size of image patch, Size of the dictionary, Stride of image patch, Desired sparsity
Scaling	Problem size via \# of image patches, Parameters
Metrics	Time for setup, Time for reconstruction, Reconstruction performance, Reconstruction sparsity, Compute resource usage, Energy resource usage

Neural Graph Analysis

Example Results -

Single Source Shortest Path (SSSP)

- Between a source and target node, what is the shortest path (and path length) that connects the two
- SNN is straightforward - each vertex in the source graph is a neuron, each edge is a synapse between neurons, \& graph weights equate to delays
- The source neuron receives input driving it to spike send ensuing spikes through the SNN
- Shortest path length is determined when the target spikes \& monitoring edges can yield the path

Parameterization	Graph generation (uniformly random tree, small world), Nodes, Weight range, Max runtime, Source, Target
Scaling	Graph scale, Weight/delay range
Metrics	Total time, Time for setup

Neuromorphic Random Walk

Discrete time Markov Chain (DTMC)

- Particle Angular Fluence: the time-integrated flux of particles traveling through media given as a function of position and velocity
- Particles travel at a constant speed and experience relative velocity scattering over a small region of space
- Conventional approach models walkers \& tracks states - neuromorphic models state \& tracks walkers

Smith, J. Darby, et al. "Neuromorphic scaling advantages for energy-efficient random walk computations." Nature Electronics (2022): 1-11.

Parameterization	Number of total walkers, Size of direction/relative velocity/angular discretization, Time step size of simulation, Size of the state space, Size of positional discretization
Scaling	Walkers, Mesh size
Metrics	Energy cost of walkers, Time to run, Space to run

Example Results -
${ }^{0.0005}$

Where does this advantage come from?

- Extreme parallelism of neuromorphic hardware plus
Embarrassingly parallel nature of Monte Carlo random walks
- Many simple calculations in parallel vs
Single complex calculation
- Limiting factor going forward will likely be probabilistic component
- Quality and form of random numbers
- Quantity and location of random number generation

What happens if we build a neuromorphic chip centered on probabilistic sampling?
Part 3

What constitutes brain inspiration?

The brain's trillions of synapses exhibit considerable stochasticity

The brain appears to use probabilistic sampling of populations

Neuron
Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffusion

A

Many applications of computing have inherent uncertainty

Many applications of computing have inherent uncertainty

Two main use cases:

* Mod-Sim --- Generating the random number you need
* Artificial Intelligence --- Effective and efficient sampling of algorithms

Making stochasticity ubiquitous may require that we revisit how we design neuromorphic hardware

COINFLIPS

O ENERGY.GOV	scanct a mwownow	intectrconowr	stevirr a swerr	(\%) smet enthar, savt moner	Q
		Duparment			
DOE Announces \$554 Million for					
Microelectronics Research to Power Next-					
Manch 24.2081					
National Labs will Lead Transformation of Smart Devices, Clean Energy Technologies, and Semicenductor					Manutacturing
WASHINGTON, O.C. - The us. Department of Energy (OOE) today announced up to $\$ 54$ million in new funding for the agencys National Laboratories to adrance basic research in microelectronics:					
Microelectronics are a fundamental building block of modern devices such as laptops,					
smartphones, and home appliances, and hold the potential to power innovative solutions to					
challenges like the climate crisis and national security. Watch this videor to leam more about					
"Thanks to microelectrenics, translormational technologies that used to swallow up entire					
buildings now fit in the palms of our hands-and it's time to take this work to the next level." said					
Secretary of Energy Jenniter M. Granholm. "Microelectronics are the key to the technologits of tomorrow, and with DOE's worid-class scientists leading the charge, they can help bring our clean					
energy future to life and put americs a step ahead of our economic competitors.					
Micreelectronics were originally developed as a powerful capability for miniaturizing transistors					
and electronic circuits. Since then, they have fueled a digital revolution, making devices like					
	aters and phones more	erfut compact, and	vonient for everydas		
More microelectronics research is needed to pave the way for the next generation of revolutionary					
technologies. Petential applications include clean energy technologies that will help America					
combat the climate crisis, such as developments to make the nation's grid more efficient, more					
responsive to flutustions in energy demand, and more resilient to extreme westher events.					
New resesrch could also help revive American production of semiconductors-critical computer					

WASHINGTON, O.C. - The us. Department of Energy (006) today announced up to $\$ 54$ million in . in presics are a Uuda mentar buliding block or modern devices such as laptops, challenges like the climate crisis and national security. Watch this videon to learn more about rocketror sesretary of Energy deniter M. Granholm "nistelectroniss are the key to the technolesies of Iomorrow, and with DoE's world-class scientists leading the charge, they can help bring our clean anergy future to life and put America a step ahead of our economic competitors "
end and

More microelectronics research is needed to pave the way for the next generation of revolutionary rechnologies. Potential applications include clean energy technologies that will help America

New resesch could also help revive American production of semiconductors-critical computer

CO-designed Improved Neural Foundations Leveraging Inherent Physics Stochasticity (COINFLIPS)

COINFLIPS devices

Probabilistic
Circuits and
Architectures

Probabilistic Neural Theory and Algorithms

Particle Physics
Demonstration

Tunable RNG - magnetic tunnel junctions \& tunnel diodes

Tunable random number generator
Why did we pick the devices we picked?

Tunable

Integration

COINFLIPS motivating application

Jet detection in particle physics

COINFLIPS algorithms - random number generation

COINFLIPS

Random numbers are a non-trivial computational cost today

We want a RN pulled from some physics distribution

Software uses pseudo-RNG to pull uniform random number

- This is simple, but can be costly for volume and quality

Numerical methods convert uniform RN to desired distribution

- Some distributions are easy (simple inverse CDF)
- Some distributions are challenging

It is possible to generate a random number from a desired statistical distribution

Expand Boolean tree of PDF and flip many coins for all branches in parallel

- Worst case, this is a exponentially large number of coins

Convert to
desired PDF

- PDFs have structure and redundancies that can be leveraged
- Correlations from devices or built into neural circuits can similarly compress tree

A potential COINFLIPS architecture for generating random numbers

COINFLIPS algorithms - artificial intelligence

Sampling ANNs with stochastic synapses provides

 estimate of uncertainty> Approach

> Train simple neural network with only minor modifications
$>$ Simple network can achieve decent performance

Weights continuous between 0 and 1

Sampling ANNs with stochastic synapses provides estimate of uncertainty

> Approach

> Train simple neural network with only minor modifications
> Convert weights to Bernoulli probabilities (weighted coinflips)
> Sample network to identify what classesistencee

Weights sampled as probability
$2^{\text {nd }}$ choice of stochastic sampled networks is often the 'right' answer for misclassified results

$6-0.38$
9-0.31
4-0.36
9-0.26
$3-0.23$
6-0.26
$0-0.39$
5-0.17
4-0.28
7-0.35
2-0.20
9-0.20
2-0.25
6-0.27

COINFLIPS circuit design

Al-Enhanced Co-Design across Scales

Device Design
Circuit Design
System Design
Architecture Design
Algorithm Design

Can we
leverage Al to generate
specifications
for novel
devices?

Evolutionary/RL approaches

Analytical and cycleaccurate tools, network simulation tools

RL approaches

Katie Schuman (Tenn)
Suma Cardwell (Sandia)

COINFLIPS presents an opportunity to develop a community of interest to create a new computing paradigm
 different classes of applications

Factor in integration and system design from the onset of a new approach

Optimize non-CMOS devices for
scalability and cost of reliability scalability and cost of reliability

COINFLIPS Team

Sandia: Shashank Misra, Suma Cardwell, Darby Smith, Conrad James, Brad
Theilman, William Severa, Ojas Parekh, Yipu Wang, Cale Crowder, Tzu-Ming Lu, Chris Allemang, Xujiao Gao, Juan Pedro Mendez, Scott Schmucker, Deanna Lopez

Tennessee: Katie Schuman

Temple: Les Bland, Bernd Surrow, Jae Nam

Texas: Jean Anne Incorvia, Jaesuk Kwon, Samuel Liu

Thanks!

NYU: Andy Kent, Laura Rehm

DOE Office of Science: ASCR (Robinson Pino PM), BES, HEP, NP, FES

Office of Science

Neural Random Walks Team

Darby Smith, William Severa, Rich Lehoucq, Brian Franke, Leah Reeder, Aaron Hill, Ojas Parekh

Sandia National Laboratories Laboratory Directed Research and Development DOE NNSA: Advanced Simulation and Computing

Neural Mini-Apps Team

Craig Vineyard, Suma Cardwell, Frances Chance, Srideep Musuvathy, Fred Rothganger, William Severa, Darby Smith, Corinne Teeter, Craig Vineyard, Felix

Thanks!

 WangDOE NNSA: Advanced Simulation and Computing

LABORATORY DIRECTED RESEARCH \& DEVELOPMENT

