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Neuromorphic computing is an evolving field
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Aimone, Advanced Intelligent Systems, 2021



Neuromorphic today and tomorrow: impact of 
neuromorphic in probabilistic scientific computing
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Part 1 – Neuromorphic advantage on 
a scientific computing task

Part 2 – Neuromorphic Mini-Apps 
to understand impact on HPC

Part 3 – Future Probabilistic 
COINFLIPS Architecture



Neuromorphic hardware shows 
advantages for probabilistic 
algorithms
Part 1
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Neuromorphic algorithm can simulate random 
walks
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Leaky Integrate and Fire Neuron

Smith et al., Nature Electronics 2022
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We can identify a neuromorphic advantage for 
simulating random walks 
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We define a neuromorphic advantage as an 
algorithm that shows a demonstrable advantage

in terms of one resource (e.g., energy) while 
exhibiting comparable scaling in other resources 

(e.g., time). 

Smith et al., Nature Electronics 2022



Neuromorphic Mini-Apps to 
understand long-term value for HPC
Part 2

10



Will this translate to real world impact?
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SPARTA simulation of Mir space station
(Michael Gallis, Sandia)
• Gas physics
• 1.6 Billion particles
• 10 million cells
• 500,000 timesteps
• 2048 Xeon cores

Random walks on neuromorphic
(Smith et al., 2022)
• Brownian motion
• 1000’s of particles
• 100’s of cells
• 100’s of timesteps
• 1 neuromorphic chip



Why Mini-Apps for Neuromorphic?
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• From Heroux et al., 2009: “there is a middle ground for small, self-
contained programs that, like benchmarks, contain the performance-
intensive computations of a large-scale application, but are large enough to 
also contain the context of those computations.”

These Mini-Apps would enable:
• Interaction with external research communities
• Simulators
• Early node architecture studies
• Network scaling studies
• New language and programming models
• Compiler tuning

Influence Future Platforms

Tailor Algorithms to Platforms

Analyze Testbed Systems

Conventional systems have less 
uncertainty at algorithm and 

programming level

NMC systems have 
considerable uncertainty at 
algorithm level



Conventional and Neuromorphic Mini-Apps
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FUGU

Neuromorphic Mini-Apps?

Conventional Mini-Apps ? ? ?
Mini-Apps

Platform-
Agnostic 

Programming 
Layer

Back-Ends



Fugu addresses two key challenges of neuromorphic 
programming
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Portability
Programming neuromorphic platforms requires a 
graph of neurons (nodes) and synapses (edges)
• Need to represent neural algorithms in common 

graph format
• Need ability to translate graph into backend 

specific constraints

Composability
Deploying applications on neuromorphic hardware 
requires implementing algorithms within neural 
circuits
• Need to be able to build applications from well 

designed kernels
• Need to take advantage of features offered by 

spiking neuron model

Neuromorphic Mini-Apps?

? ? ?



Neural Sparse Coding
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Sparse Coding or Sparse Dictionary Learning 
• Method of modeling data by decomposing it into sparse 

linear combinations of elements of a given overcomplete 
basis set

• On neuromorphic, the LASSO (least absolute shrinkage and 
selection operator) computation for sparse coding can be 
approximated with the spike-based algorithm LCA (locally 
competitive algorithm)
• Implemented as rate-coded neurons with inhibitory connections between 

competing dictionary elements

Example Results -

Parameterization Size of image, Size of image patch, Size of the dictionary, 
Stride of image patch, Desired sparsity 

Scaling Problem size via # of image patches, Parameters 

Metrics Time for setup, Time for reconstruction, Reconstruction 
performance, Reconstruction sparsity, Compute resource 
usage, Energy resource usage



Neural Graph Analysis
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Single Source Shortest Path (SSSP)
• Between a source and target node, what is the shortest path 

(and path length) that connects the two
• SNN is straightforward – each vertex in the source graph is a 

neuron, each edge is a synapse between neurons, & graph 
weights equate to delays
• The source neuron receives input driving it to spike send ensuing spikes 

through the SNN
• Shortest path length is determined when the target spikes & monitoring edges 

can yield the path

Example Results -

Parameterization Graph generation (uniformly random tree, small 
world), Nodes, Weight range, Max runtime, Source, 
Target

Scaling Graph scale, Weight/delay range

Metrics Total time, Time for setup



Neuromorphic Random Walk
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Discrete time Markov Chain (DTMC) 
• Particle Angular Fluence: the time-integrated flux of particles traveling 

through media given as a function of position and velocity
• Particles travel at a constant speed and experience relative velocity 

scattering over a small region of space
• Conventional approach models walkers & tracks states – neuromorphic 

models state & tracks walkers 
Smith, J. Darby, et al. "Neuromorphic scaling advantages for energy-efficient 
random walk computations." Nature Electronics (2022): 1-11.

Example Results -

Parameterization Number of total walkers, Size of direction/relative 
velocity/angular discretization, Time step size of 
simulation, Size of the state space, Size of positional 
discretization

Scaling Walkers, Mesh size

Metrics Energy cost of walkers, Time to run, Space to run 



Where does this advantage come from?
• Extreme parallelism of neuromorphic hardware 
plus
Embarrassingly parallel nature of Monte Carlo random 
walks

• Many simple calculations in parallel 
vs
Single complex calculation

• Limiting factor going forward will likely be probabilistic 
component
• Quality and form of random numbers
• Quantity and location of random number generation
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What happens if we build a 
neuromorphic chip centered on 
probabilistic sampling?
Part 3
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What constitutes brain inspiration?

Analog 
computing!

Spiking!

High fan-in 
connectivity! 

Learning!

Stochasticity!
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The brain’s trillions of synapses exhibit considerable 
stochasticity
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The brain appears to use probabilistic sampling of 
populations
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Many applications of computing have inherent 
uncertainty

23



Many applications of computing have inherent 
uncertainty
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Two main use cases:
v Mod-Sim --- Generating the random number you need
v Artificial Intelligence --- Effective and efficient sampling of algorithms



Making stochasticity ubiquitous may require that we 
revisit how we design neuromorphic hardware 
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?



COINFLIPS
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Show Empirical 
and Theoretical 

Application 
Impact

Prototype 
Probabilistic 

Neuromorphic
System

Scalable and 
Tunable 

Stochastic 
Device 

Strategy

CO-designed Improved Neural Foundations Leveraging 
Inherent Physics Stochasticity (COINFLIPS)
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Every synapse in the brain is a 

stochastic “coinflip”

Co-design approach on new energy-
efficient microelectronics

Approach

Inspiration

Tunable 
Stochastic 

Devices

Probabilistic 
Neural Theory 

and Algorithms

Particle Physics 
Demonstration

Probabilistic 
Circuits and 

Architectures
Formal 

Theoretical 
Framework



COINFLIPS devices
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Tunable 
Stochastic 

Devices

Probabilistic 
Neural Theory 

and Algorithms

Particle Physics 
Demonstration

Probabilistic 
Circuits and 

Architectures



Tunable RNG – magnetic tunnel junctions & tunnel diodes

Large signals Tunable

Why did we pick the devices we picked?Tunable random number generator

50:50

20:80

heads

tails

Integration

II. Tunnel diodes

Shashank Misra & Tzu-Ming Lu

I. Magnetic tunnel junctions

Jean Anne Incorvia Andy Kent

N-sourceP-drain

gate

Implant

31

31



COINFLIPS motivating application
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Tunable 
Stochastic 

Devices

Probabilistic 
Neural Theory 

and Algorithms

Particle Physics 
Demonstration

Probabilistic 
Circuits and 

Architectures



Jet detection in particle physics

33

Les Bland, Bernd Surrow, Jae Nam

Improved Monte 
Carlo modeling of 
particle physics

Bayesian Neural 
Networks to process 
sensor readings in 
real-time 



COINFLIPS algorithms – random number generation
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Tunable 
Stochastic 

Devices

Probabilistic 
Neural Theory 

and Algorithms

Particle Physics 
Demonstration

Probabilistic 
Circuits and 

Architectures



Random numbers are a non-trivial computational 
cost today
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Draw uniform 
RNG

Convert to 
desired PDF

We want a RN pulled from some physics distribution

Software uses pseudo-RNG to pull uniform random number
- This is simple, but can be costly for volume and quality

Numerical methods convert uniform RN to desired distribution
- Some distributions are easy (simple inverse CDF)
- Some distributions are challenging



It is possible to generate a random number from a 
desired statistical distribution 
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Draw uniform 
RNG

Convert to 
desired PDF

Expand Boolean tree of PDF and flip many coins for 
all branches in parallel

• Worst case, this is a exponentially large number of coins
• PDFs have structure and redundancies that can be leveraged
• Correlations from devices or built into neural circuits can 

similarly compress tree

If(C0=T, p1=0.8) If(C0=H, p1=0.6)

Darby Smith



A potential COINFLIPS architecture for generating 
random numbers
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Neural Layer

Program/
Learning?

CPU-like processor

Program/
Learning?



COINFLIPS algorithms – artificial intelligence
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Tunable 
Stochastic 

Devices

Probabilistic 
Neural Theory 

and Algorithms

Particle Physics 
Demonstration

Probabilistic 
Circuits and 

Architectures



Sampling ANNs with stochastic synapses provides 
estimate of uncertainty
ØApproach

Ø Train simple neural network 
with only minor modifications

Ø Simple network can achieve 
decent performance

41

“4”

784 x 400

400 x 10

Weights continuous between 0 and 1



Sampling ANNs with stochastic synapses provides 
estimate of uncertainty
ØApproach

Ø Train simple neural network with 
only minor modifications

Ø Convert weights to Bernoulli 
probabilities (weighted coinflips)

Ø Sample network to identify what 
classes 

42

784 x 400

400 x 10

Weights sampled as probability

4 7



2nd choice of stochastic sampled networks is often 
the ‘right’ answer for misclassified results
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COINFLIPS circuit design

44

Tunable 
Stochastic 

Devices

Probabilistic 
Neural Theory 

and Algorithms

Particle Physics 
Demonstration

Probabilistic 
Circuits and 

Architectures



AI-Enhanced Co-Design across Scales
Circuit Design System Design Architecture Design

A
pp

ro
ac

h

Analytical and cycle-
accurate tools, network 

simulation tools

Evolutionary/RL approaches

RL approaches

Device  Design

Can we 
leverage AI to 

generate 
specifications 

for novel 
devices?

Algorithm Design

Neural 
Array

Fan (UCF), 2018

Katie Schuman (Tenn)
Suma Cardwell (Sandia)



COINFLIPS presents an opportunity to develop a 
community of interest to create a new computing 
paradigm
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Jointly develop a programming 
model and theoretical framework 

with an emerging technology

Factor in integration and system 
design from the onset 

of a new approach

Optimize non-CMOS devices for 
scalability and cost of reliability

Opportunity for computing to 
prioritize impact on 

different classes of applications



Thanks!
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COINFLIPS Team

Sandia: Shashank Misra, Suma Cardwell, Darby Smith, Conrad James, Brad 
Theilman, William Severa, Ojas Parekh, Yipu Wang, Cale Crowder, Tzu-Ming Lu, 
Chris Allemang, Xujiao Gao, Juan Pedro Mendez, Scott Schmucker, Deanna Lopez

Tennessee: Katie Schuman

Temple: Les Bland, Bernd Surrow, Jae Nam

Texas: Jean Anne Incorvia, Jaesuk Kwon, Samuel Liu

NYU: Andy Kent, Laura Rehm

DOE Office of Science: ASCR (Robinson Pino PM), BES, HEP, NP, FES



Thanks!
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Neural Random Walks Team

Darby Smith, William Severa, Rich Lehoucq, 
Brian Franke, Leah Reeder, Aaron Hill, Ojas Parekh

Sandia National Laboratories Laboratory Directed Research and Development
DOE NNSA: Advanced Simulation and Computing

Neural Mini-Apps Team

Craig Vineyard, Suma Cardwell, Frances Chance, Srideep Musuvathy, Fred 
Rothganger, William Severa, Darby Smith, Corinne Teeter, Craig Vineyard, Felix 
Wang 

DOE NNSA: Advanced Simulation and Computing


