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Neuromorphic computing is an evolving field @

COINFLIPS
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Neuromorphic today and tomorrow: impact of @
neuromorphic in probabilistic scientific computing  conriies
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Neuromorphic hardware shows
advantages for probabilistic
algorithms

Part 1

A
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Neuromorphic scaling advantages for
energy-efficient random walk computations
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Neuromorphic algorithm can simulate random
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We can identify a neuromorphic advantage for
simulating random walks
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Neuromorphic Mini-Apps to
understand long-term value for HPC

Part 2

A




Will this translate to real world impact?

COINFLIPS

timestep=1

number of walkers

Random walks on neuromorphic SPARTA simulation of Mir space station
(Smith et al., 2022) (Michael Gallis, Sandia)

* Brownian motion * Gas physics

* 1000's of particles * 1.6 Billion particles

* 100's of cells * 10 million cells

* 100’s of timesteps * 500,000 timesteps

* 1 neuromorphic chip * 2048 Xeon cores 11




Why Mini-Apps for Neuromorphic? @

COINFLIPS

* From Heroux et al., 2009: “there is a middle ground for small, self-
contained programs that, like benchmarks, contain the performance-
intensive computations of a large-scale application, but are large enough to

: o
also contain the context of those computations. NMC systems have

considerable uncertainty at

algorithm level
These Mini-Apps would enable:

* Interaction with external research communities 4»64» -
* Simulators v A:‘ Influence Future Platforms
* Early node architecture studies " :

Y ) ) S | - =
* Network scaling studies )v‘
* New language and programming models Analyze Testbed Systems
« Compiler tuning }6‘, — —— A

}v(
Tailor Algorithms to Platforms

Conventional systems have less
uncertainty at algorithm and
programming level




Conventional and Neuromorphic Mini-Apps @

COINFLIPS

#F“' &=
e $01 3

VA ND

-— S S S T Al Al A Mini-Apps

[kokkos RAJV i
Programming
Layer

Back-Ends




Fugu addresses two key challenges of neuromorphic @

programming

Composability

Deploying applications on neuromorphic hardware

requires implementing algorithms within neural

circuits

* Need to be able to build applications from well
designed kernels

* Need to take advantage of features offered by
spiking neuron model

Portability

Programming neuromorphic platforms requires a

graph of neurons (nodes) and synapses (edges)

* Need to represent neural algorithms in common
graph format

* Need ability to translate graph into backend
specific constraints

14




Neural Sparse Coding

COINFLIPS

Example Results -

Sparse Cading Methods - Campulation Scaling
—4— loihi lca

A

Sparse Cading Methods - Camputation Scaling 3
 —4— soams hua

w

Sparse Coding or Sparse Dictionary Learning

* Method of modeling data by decomposing it into sparse
linear combinations of elements of a given overcomplete

woom oo om
5

Exccution Time (ms)
N

Exccuton Time (2)

~
-

basis set : o

. . 500 1000 um:I zoz:m:i:'m WoC 3500 400C e e u“,,,,;-;f:,',\,:,,ﬂc o0 mie - sane
* On neuromorphic, the LASSO (least absolute shrinkage and e
. . . Sparse Cading Methods - Carmpulation Scaling 200 Sparse Cading Methods - Carmpulation Scaling

selection operator) computation for sparse coding can be e " rap—

approximated with the spike-based algorithm LCA (locally I,
competitive algorithm) fw

* Implemented as rate-coded neurons with inhibitory connections between 32: gff.,

competing dictionary elements » a6

Parameterization  Size of image, Size of image patch, Size of the dictionary,
Stride of image patch, Desired sparsity

Scaling Problem size via # of image patches, Parameters

Metrics Time for setup, Time for reconstruction, Reconstruction
performance, Reconstruction sparsity, Compute resource
usage, Energy resource usage

15



Neural Graph Analysis

Example Results -

Single Source Shortest Path (SSSP)

* Between a source and target node, what is the shortest path
(and path length) that connects the two

* SNN is straightforward — each vertex in the source graph is a
neuron, each edge is a synapse between neurons, & graph
weights equate to delays

* The source neuron receives input driving it to spike send ensuing spikes
through the SNN

* Shortest path length is determined when the target spikes & monitoring edges
can yield the path

Parameterization Graph generation (uniformly random tree, small
world), Nodes, Weight range, Max runtime, Source,
Target

Scaling Graph scale, Weight/delay range

Metrics Total time, Time for setup

@®

COINFLIPS

Backend /
Delay Multiplier

~*-D§ Sim - 5
*Loihi - 5
~*-DS Sim - 10
~-Laihi - 10

e o @9
> o o
S 8 &

Time per timestep

=
o
~

+ DS Sim - 20
~e—Laoihi - 20

=
o
=

=]

Q 500 1000 1500 2000 2500 3000
Graph Size (number nedes)

16



Neuromorphic Random Walk

COINFLIPS
Example Results -
. . . 0,038
Discrete time Markov Chain (DTMC) R p—
0.03 °
e Particle Angular Fluence: the time-integrated flux of particles traveling - o y
. . . oy . = = Poly. |[Fugu CPU Simulation|
through media given as a function of position and velocity i . y
. . . . E . * »» linear [SpiNNaker) 7
* Particles travel at a constant speed and experience relative velocity 5 s /
scattering over a small region of space ¥ om i
* Conventional approach models walkers & tracks states — neuromorphic 0005 ) Pt
models state & tracks walkers o L__@cce@eeenecasteaeeee
o 50 100 150 200 250 300
Smith, J. Darby, et al. "Neuromorphic scaling advantages for energy-efficient e -
. . * Lol with probes
random walk computations." Nature Electronics (2022): 1-11. 0065 | v Lol omatas o
T 006 s« Linear {Loini with probes} . g
gO.DSS ==+« Linsar {Leihi ne probes) - 0.000% g
% oas P | 0.00035 ¢
Parameterization =~ Number of total walkers, Size of direction/relative k> | . T owasy
velocity/angular discretization, Time step size of % o | vt
. . . . . 0.025 . hd 0.00015
simulation, Size of the state space, Size of positional - o
discretization e
Scaling Walkers, Mesh size
Metrics Energy cost of walkers, Time to run, Space to run

17




Where does this advantage come from?

e Extreme parallelism of neuromorphic hardware

plus _
Embarrassingly parallel nature of Monte Carlo random

walks

* Many simple calculations in parallel
VS
Single complex calculation

* Limiting factor going forward will likely be probabilistic
component
e Quality and form of random numbers
e Quantity and location of random number generation

®

COINFLIPS
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What happens if we build a

neuromorphic chip centered on
probabilistic sampling?

Part 3

A




What constitutes brain inspiration? @

COINFLIPS

High fan-in
connectivity!

Analog
computing!




The brain’s trillions of synapses exhibit considerable @
stochasticity




The brain appears to use probabilistic sampling of
populations

Neuron

Hippocampal Reactivation of Random Trajectories
Resembling Brownian Diffusion

Highlights Authors
« Hippocampal replay can represent Brownian diffusion-like  Federico Stella, Peter Baracskay
random trajectories Joseph O'Neill, Jozsef Csicsvari A B a l_ 1
. . . - . 0.2 4
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Many applications of computing have inherent {r
uncertainty




Many applications of computing have inherent (r
uncertainty

Two main use cases:
¢ Mod-Sim --- Generating the random number you need
» Artificial Intelligence --- Effective and efficient sampling of algorithms

.0

L)

.0



Making stochasticity ubiquitous may require that we
revisit how we design neuromorphic hardware

25
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SCIENCE & INNOVATION INERGY LCONOMY STOURITY & SAFLTY o SAVE ENERGY, SAVE MONEY Q

DOE Announces $54 Million for

Microelectronics Research to Power Next-
Generation Technologies

MARCH 24,

v » DOL Ao 4 54 Mg i Magr gt 1 it $ Bt 16 Powes Poret Gone

National Labs Will Lead Transformation of Smart Devices, Clean Energy gies. and Semicond
Manufacturing

WASHINGTON, O.C, = The US. Dopartmaent of Energy (0O€) today anncunced up to $54 million in
new funding for the agency’s National Laboratories to advance basic research in microelectronics.
Microelectronics are a fundamental building block of modern devices such as laptops,
smartphones, and home appliances, and hold the potential 1o power innovative solutions to
challenges like the climate crisis and national security. Watch this videor to learn more about

microelectronics.

“Thanks to microelectronics, transformational technologies that used to swallow up entire
buildings now fit in the palms of our hands—and it's time 1o take this work to the next level,” said
S y of Energy ifor M. Granholm. “Microalectronics ae the kay 1o the techaologies of

tomorrow, and with DOE's world-class scientists leading the charge, they can help bring our clean

energy future to life and put America a step ahead of our economic competitors.”

Microelectronics were originally developed as a powerful capability for miniaturizing transistors
and electronic circuits, Since then. they have fueled a digital revolution, making devices like
COMPUTErS and phonts More poweriul, COMPRLT, and Convonaent 1of overyday use,

More microelectronics research is needed to pave the way for the next generation of revolutionary
technologies. Potential applications include clean energy technologies that will help America
combat the climate crisis, such as developments to make the nation’s grid more efficient, more

1e3p0N3IVe 10 Muctuations in energy demand, and more resilient to 0Me woather events.

New research could also help revive American production of semiconductors—critical computer

e rmmne e — 27




CO-designed Improved Neural Foundations Leveraging

Inherent Physics Stochasticity (COINFLIPS)

MT]
v

Theory Tunable

Stochastic
- Tunnel dicde .
Algorithms Physics o | | Devices
Approach | | N .
Circuns Materials

. Probabilistic
Co-design approach on new energy- o= a0

efficient microelectronics

Every synapse in the brainis a
stochastic “coinflip”

Architectures

Probabilistic
Neural Theory
and Algorithms

.

Particle Physics
Demonstration

OAK RIDGE

National Laboratory

i

®

COINFLIPS

Show Empirical
and Theoretical
Application

Impact
P Formal

Theoretical
Framework

Prototype
Probabilistic
Neuromorphic
System
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Stochastic
Device

Strategy
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COINFLIPS devices @

COINFLIPS

Tunable
Stochastic

Devices

MT) ? ﬁ;i ||
Tunnel dicde
L

voe JBL e |
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Tunable RNG — magnetic tunnel junctions & tunnel diodes @

COINFLIPS
Tunable random number generator Why did we pick the devices we picked?

%1

Large signals Tunable

Integration

- ’,A-__heads
50:50 S

20:80

Il. Tunnel diodes _
P-drain N-source

Implant

Jean Anne Incorvia Andy Kent Shashank Misra & Tzu-Ming Lu
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COINFLIPS motivating application @

COINFLIPS

Particle Physics
Demonstration
‘ M

32



Jet detection in particle physics

Detector response
Hadronization in 1 X ¢ space
. |
Improved Monte ®— 'Y T, ( -
Carlo modeling of /‘ = —n, -
particle physics y
\ J |\ ]\ J
! ! f
Parton Hadron Detector
Underlying P+P, ‘JS=51 0 GeV Identified jets
2 E 12
()
o 10 u 1010
Bayesian Neural 8 - 8
Networks to process »‘* . 6 —H
sensor readings in : 1 :
real-time 0 e v |2 s s e ——
10 -5 0 -1 - 0 5 10
Fullevent | [0 for  identified jets o,

10

COINFLIPS

Les Bland, Bernd Surrow, Jae Nam
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COINFLIPS algorithms — random number generation @

COINFLIPS
Probabilistic
N Rl Particle Physic
and Algorithms
E I

Hadrerization

I |
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Random numbers are a non-trivial computational @
cost today

We want a RN pulled from some physics distribution

Software uses pseudo-RNG to pull uniform random number

- This is simple, but can be costly for volume and quality
RNG

— Numerical methods convert uniform RN to desired distribution
desired PDF - Some distributions are easy (simple inverse CDF)
- Some distributions are challenging

36



It is possible to generate a random number from a @
desired statistical distribution

Expand Boolean tree of PDF and flip many coins for

all branches in parallel
' If(C,=T, p,=0.8) If(C,=H, p,=0.6)
- 4's Place

T Y Y Y
al o o 1

's Place

Draw uniform

RNG
Convert to * Worst case, this is a exponentially large number of coins

desired PDF * PDFs have structure and redundancies that can be leveraged

* Correlations from devices or built into neural circuits can
similarly compress tree

1's Place

Darby Smith
37




A potential COINFLIPS architecture for generating

random numbers

Neural Layer

CPU-like processor

03

| 02

0.2
015

01

.. 005

a

piil  p210  pl0f  plOD  pDIl P00 pOO2  pOCO
mP(Conflip} mP(Target) = P{Matlab)

p(bo)=.8  p(by)=.5 p(by)=.4
P(~bg)=.799 p(~b,)=.5002 p(~b,)=.4005

@®

COINFLIPS
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COINFLIPS algorithms — artificial intelligence

Tunable
Stochastic
Devices

Probabilistic
Circuits and

Probabilistic

Neural Theory
and Algorithms

Particle Physic
Demonstration

@®

COINFLIPS

4's Place

2's Place

1's Place

~
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Sampling ANNs with stochastic synapses provides
estimate of uncertainty

e
& -_."_
[

T

» Approach

» Train simple neural network
with only minor modifications
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» Simple network can achieve
decent performance
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Sampling ANNs with stochastic synapses provides

estimate of uncertainty

» Approach
» Train simple neural network with
only minor modifications
» Convert weights to Bernoulli
probabilities (weighted coinflips)
» Sample network to identify what
classeSis e

00 00 oo oo a0l 0o om an

00 00 [ oo oo 0o om oo

003

oor
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R R
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\}
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400 X 10

Weights sampled as probability

COINFLIPS
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2"d choice of stochastic sampled networks is often (F

the ‘right” answer for misclassified results

o El1 3 [<)

6-038 9-031 4-0.36 9-0.26 3-023 6-0.26 0-0.39
5-017 4-028 7-035 2-0.20 9-0.20 2-0.25 6 — 0.27




Tunable
Stochastic
Devices

COINFLIPS circuit design

Probabilistic

Circuits and
Architectures

Probabilistic
Neural Theory
and Algorithms

Particle Physic
Demonstration

Hadrorization

COINFLIPS

Letasmar response
ini# ¢ spece

Parler

Harer Crtetor

4's Place

2's Place

1's Place

~
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Al-Enhanced Co-Design across Scales

Device Design Circuit Design System Design Architecture Design ~ Algorithm Design

In-Memory Computing Cluster

Controller il
TRy

#~ Computing Unt N\
Fems

>~l—«|q—4
BHL omsel*c |3

Memory & Logic ~ Memory & Logic

Fan (UCF), 2018

Reward
Agent DNN '5:’(:’1) .
” Analytical and cycle-
nebe  OummiAgeuss . tate [—OGHOCN e Envi t
Canwe ™ . e A > i || accurate tools, network
& . o, eler 0 . )
< | leverageAlto R N . e ) simulation tools
© generate e 5 &
o 2
& specifications % S 2
a °P 2 RL approaches
< for novel —
devices?

Evolutionary/RL approaches §
Katie Schuman (Tenn)

Suma Cardwell (Sandia




COINEFLIPS presents an opportunity to develop a
community of interest to create a new computing

paradlgm Jointly develop a programming

model and theoretical framework
with an emerging technology

Opportunity for computing to
prioritize impact on
different classes of applications
Factor in integration and system
design from the onset
of a new approach

. Optimize non-CMOS devices for
scalability and cost of reliability
Q‘\@"g» ‘ S
~:“ }:) /-‘ s1=lalav:
P : k Theory @
-
Algorithms Physics
A 4
'J,"‘)

—
erl

N ¢
Vil
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Thanks!

COINFLIPS Team

Sandia: Shashank Misra, Suma Cardwell, Darby Smith, Conrad James, Brad
Theilman, William Severa, Ojas Parekh, Yipu Wang, Cale Crowder, Tzu-Ming Lu,
Chris Allemang, Xujiao Gao, Juan Pedro Mendez, Scott Schmucker, Deanna Lopez
Tennessee: Katie Schuman

Temple: Les Bland, Bernd Surrow, Jae Nam

Texas: Jean Anne Incorvia, Jaesuk Kwon, Samuel Liu

NYU: Andy Kent, Laura Rehm

DOE Office of Science: ASCR (Robinson Pino PM), BES, HEP, NP, FES

2% U.S. DEPARTMENT OF

JENERGY

Office of Science
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Thanks!

Neural Random Walks Team

Darby Smith, William Severa, Rich Lehoucq,
Brian Franke, Leah Reeder, Aaron Hill, Ojas Parekh

Sandia National Laboratories Laboratory Directed Research and Development
DOE NNSA: Advanced Simulation and Computing

Neural Mini-Apps Team
Craig Vineyard, Suma Cardwell, Frances Chance, Srideep Musuvathy, Fred
Rothganger, William Severa, Darby Smith, Corinne Teeter, Craig Vineyard, Felix

Wang

DOE NNSA: Advanced Simulation and Computing

\ %\
Z\ &’RD
H 5 E"" LABORATORY DIRECTED

RESEARCH & DEVELOPMENT 48




