
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Experiences putting Tools into Production Codes
Salishan
April 24, 2019

Olga Pearce, Lawrence Livermore National Laboratory
http://people.llnl.gov/olga

LLNL-PRES-766343
LLNL-PRES-766343 Slide 1

What is considered a Production Code at LLNL?

I Purpose: Used to answer mission-posed questions
I Simulating physics (hydrodynamics, particles, strength)
I CS infrastructure (meshing, visualization, testing and build systems, programming

models)
I Developers: Multi-disciplinary teams from different organizations
I Often >300k lines of code
I Lifespan of 30 years
I Hardware: LC clusters, flagship supercomputers, machines at other labs, laptops

LLNL-PRES-766343 Slide 2

How to know what tools are needed?

I Needs are broad (algorithms, correctness, optimization)
I Priorities are often problem-driven

How to make useful tools?
I Codes have many needs, and sometimes developers simply do not know where to ask

for help - interaction is key. Some examples:
I embedded people (Samrai, RAJA)
I people who ask many questions (STAT, Archer)

How to make someone use your tools?
I Make sure your tool works for the codes!
I Help them get started
I If your tool solves an urgent problem, people are more likely to allocate the resources

LLNL-PRES-766343 Slide 3

How to know what tools are needed?

I Needs are broad (algorithms, correctness, optimization)
I Priorities are often problem-driven

How to make useful tools?
I Codes have many needs, and sometimes developers simply do not know where to ask

for help - interaction is key. Some examples:
I embedded people (Samrai, RAJA)
I people who ask many questions (STAT, Archer)

How to make someone use your tools?
I Make sure your tool works for the codes!
I Help them get started
I If your tool solves an urgent problem, people are more likely to allocate the resources

LLNL-PRES-766343 Slide 3

Biggest pitfall: Scale

What scalability issues will your tool run into when applied to a large code?
I Reading in a large binary? Parsing large amounts of code?

I Modular approach may work best
I Example: ROSE compiler is able to process source code file by file

I Requiring large amounts of code modifications for the first try?
I Piggybacking on existing interface can help
I Example: Caliper (next)

I Scalability of analysis
I Creating large number of entries?
I Example: Caliper (next)

I Do not underestimate the building/setup process!
I People will not follow a 10-step building process that fails in unexpected ways in their

environment/configuration
I May prefer static libraries (Example: Caliper)

LLNL-PRES-766343 Slide 4

Running Example

I Application: ARES
(Mike Collette, Olga
Pearce + others)

I Tools: Caliper, Spot
(David Boehme,
David Poliakoff, Matt
Legendre)

I Timers library
(Shawn Dawson)

LLNL-PRES-766343 Slide 5

Application: ARES is a massively parallel, multi-dimensional,
multi-physics code at LLNL

Physics Capabilities:
I ALE-AMR Hydrodynamics
I High-order Eulerian Hydrodynamics
I Elastic-Plastic flow
I 3T plasma physics
I High-Explosive modeling
I Diffusion, SN Radiation

I Particulate flow
I Laser ray-tracing
I Magnetohydrodynamics (MHD)
I Dynamic mixing
I Non-LTE opacities

Applications:
I Inertial Confinement Fusion (ICF)
I Pulsed power
I National Ignition Facility debris
I High-Explosive experiments

LLNL-PRES-766343 Slide 6

ARES: So Many Libraries!

I What will your tool do?

LLNL-PRES-766343 Slide 7

ARES code complexity

https://github.com/LLNL/RAJA

I 800k lines of C/C++ with MPI (+ occasional Fortran library)
I 23 years old, used daily on our current supercomputers
I Single code base effectively utilizes all HPC platforms

⇐ Successful tool integration
I Use RAJA as an abstraction layer for on-node parallelization

I RAJA is a collection of C++ software abstractions
I Separation of concerns

C-style for-loop: RAJA-style loop:
1: double* x; double* y;
2: double a;
3: for(int i = begin;
4: i < end; ++i) {
5: y[i] += a * x[i];
6: }

1: double* x; double* y;
2: double a;
3: RAJA::forall<exec_policy>
4: (begin, end, [=] (int i) {
5: y[i] += a * x[i];
6: });

I Use different RAJA backends (CUDA, OpenMP)

LLNL-PRES-766343 Slide 8

ARES code complexity https://github.com/LLNL/RAJA

I 800k lines of C/C++ with MPI (+ occasional Fortran library)
I 23 years old, used daily on our current supercomputers
I Single code base effectively utilizes all HPC platforms

⇐ Successful tool integration

I Use RAJA as an abstraction layer for on-node parallelization
I RAJA is a collection of C++ software abstractions
I Separation of concerns

C-style for-loop: RAJA-style loop:
1: double* x; double* y;
2: double a;
3: for(int i = begin;
4: i < end; ++i) {
5: y[i] += a * x[i];
6: }

1: double* x; double* y;
2: double a;
3: RAJA::forall<exec_policy>
4: (begin, end, [=] (int i) {
5: y[i] += a * x[i];
6: });

I Use different RAJA backends (CUDA, OpenMP)
LLNL-PRES-766343 Slide 8

ARES code complexity https://github.com/LLNL/RAJA

I 800k lines of C/C++ with MPI (+ occasional Fortran library)
I 23 years old, used daily on our current supercomputers
I Single code base effectively utilizes all HPC platforms ⇐ Successful tool integration
I Use RAJA as an abstraction layer for on-node parallelization

I RAJA is a collection of C++ software abstractions
I Separation of concerns

C-style for-loop: RAJA-style loop:
1: double* x; double* y;
2: double a;
3: for(int i = begin;
4: i < end; ++i) {
5: y[i] += a * x[i];
6: }

1: double* x; double* y;
2: double a;
3: RAJA::forall<exec_policy>
4: (begin, end, [=] (int i) {
5: y[i] += a * x[i];
6: });

I Use different RAJA backends (CUDA, OpenMP)
LLNL-PRES-766343 Slide 8

Tool: Caliper [SC’16] https://github.com/LLNL/Caliper

I Performance analysis toolbox, leverages existing tools
I Developed at LLNL
I Caliper team is responsive to our needs

1. Annotate: begin/end API similar to timers libraries
I Annotation of libraries (e.g., SAMRAI, hypre) combined seamlessly

2. Collect: Runtime parameters to instruct Caliper to measure:
I Measure MPI function calls
I Linux perf_event sampling (Libpfm)
I Measure CUDA driver/runtime calls (using CUPTI)

3. Analyze
I Using JSON output format

LLNL-PRES-766343 Slide 9

Caliper integration into ARES: Early work

2014 Caliper development starts (Boehme)
2015 First used in ARES (Olga)
2015 Used in ARES dependencies, Hypre and Samrai (Olga)
2016 First paper published (SC’16)
2016 Requests for MPI features (Olga)
2016 Formally put into Hypre (Boehme)
2016 Spot project starts (Poliakoff)
2017 Requests for GPU features (Olga)

LLNL-PRES-766343 Slide 10

ARES+Caliper use cases

I Correlating performance of components (remesh → solver)
I RAJA kernels (FLOPs, memory accesses, performance)
I MPI performance
I GPU performance

200 250 300 350 400
0

2

4

6

8

0

Problem size (zones 3)

Ti
m

e
(s

ec
)

1 MPI process/GPU
4 MPI processes/GPU + MPS

I Spend more time in
cudaDeviceSynchronize
with 1 MPI process/GPU

LLNL-PRES-766343 Slide 11

Tool: Spot

I Web-based Analysis Tools
I Developed at LLNL
I Provides access to all collected performance data
I Incorporates analysis/visualization modules for common

experiments

I Time attribution to functions/subcomponents
I Performance database over time
I Analysis: metrics per component (cache, CPU instructions, MPI trace, etc.)

LLNL-PRES-766343 Slide 12

Caliper+Spot integration into ARES: Formal integration

4/18 Make Spot work with Caliper (Poliakoff)
5/18 Instrument ARES through the Timers library (Poliakoff)
6/18 Build process (Poliakoff, Collette, Olga)
7/18 Static libraries, please (Poliakoff, Boehme)
8/18 Lower overhead, please (Boehme)
9/18 All compilers, please (I am looking at you, PGI) (Poliakoff, Boehme) - it came back!

10/18 Pull request for Timers library (Poliakoff, Dawson)
10/18 Integration with the testing system (Poliakoff)
11/18 Pull request for ARES (Poliakoff, Olga)
12/18 Release of the Timers library with Caliper (Poliakoff, Dawson)

1/19 Release of the Timers library take 2 - pending
2/19 Still converging on ARES pull request

LLNL-PRES-766343 Slide 13

Integrating Spot+Caliper in MARBL

Done in a month! (December 2018). Leveraged:

I Spot+Caliper work
I Build, libraries, compilers work
I Caliper overhead reduction work

Instrumentation is very minimal at this point, so the danger is whether it will end up being
used

LLNL-PRES-766343 Slide 14

Conclusions

I Define problem: Identify need (new, ongoing)
I Propose a solution: Quick proof of concept ⇐ Scalability!
I Solve the problem ⇐ Interactive help is key
I Keep up with hardware

I Offer solutions for new hardware, or at least CPU tools to solve GPU problems (Archer)
I On-going feature addition, e.g., Caliper can answer more open questions:

I CPU memory bandwidth utilization
I GPU utilization/occupancy, register pressure
I Overlap in heterogeneous system (CPU computation, GPU computation, MPI

communication, memory transfer)
I What is the bottleneck now: CPU? GPU? Memory transfer or access? MPI?
I Other issues on new platforms

I Productization plan, Support plan
I Human interaction is key

LLNL-PRES-766343 Slide 15

Thank you

I ARES team Lawrence Livermore National Laboratory
I Caliper team https://github.com/LLNL/Caliper

I Spot team

LLNL-PRES-766343 Slide 16

https://github.com/LLNL/Caliper

