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▪ “In future microprocessors, the energy expended for data movement will have a critical effect on 
achievable performance.”

▪ “… movement consumes almost 58 watts with hardly any energy budget left for computation.”
▪ “…the cost of data movement starts to dominate.”
▪ “…data movement over these networks must be limited to conserve energy…”
▪ the phrase “data movement” appears 18 times on 11 pages (usually in concerning contexts)!
▪ “Efficient data orchestration will increasingly be critical, evolving to more efficient memory 

hierarchies and new types of interconnect tailored for locality and that depend on 
sophisticated software to place computation and data so as to minimize data movement.”

Source: NVIDIA
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languages and keeps us thinking in word-at-a-time 
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▪ Legion is taking a good direction towards data-centric

▪ Tasking relies on data placement but not really dependencies (not visible to tool-chain)

▪ But it is still control-centric in the tasks – not (performance) portable between devices!

▪ Let’s go a step further towards an explicitly data-centric viewpoint 

▪ For performance engineers at least!
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Performance Portability with DataCentric (DaCe) Parallel Programming

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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Domain Scientist

@dace.program
def program(A, B):

@dace.map
def heat(z: _[0:D], 

y: _[0:H],
x: _[0:W]):

a << A[z,y,x]
b >> B[z,y,x]

...

High-Level Program

𝜕𝑢

𝜕𝑡
− 𝛼𝛻2𝑢 = 0

Problem Formulation

TensorFlow

Explicit Implicit

numpy / 
MATLAB

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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Performance for matrix multiplication on x86

SDFG

Naïve
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Performance for matrix multiplication on x86

SDFG
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Performance for matrix multiplication on x86

PromoteTransient
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MapReduceFusionNaïve

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs



spcl.inf.ethz.ch

@spcl_eth

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
12

Performance for matrix multiplication on x86

Intel MKL

OpenBLAS

DAPP



spcl.inf.ethz.ch

@spcl_eth

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
12

Performance for matrix multiplication on x86

Intel MKL

OpenBLAS

25% difference

DAPP



spcl.inf.ethz.ch

@spcl_eth

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
12

Performance for matrix multiplication on x86

Intel MKL

OpenBLAS

25% difference

DAPP

With more tuning: 98.6% of MKL



spcl.inf.ethz.ch

@spcl_eth

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
12

Performance for matrix multiplication on x86

Intel MKL

OpenBLAS

25% difference

DAPP

With more tuning: 98.6% of MKLBut do we really care about MMM?
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Quantum Transport Simulations with OMEN

Electrons 𝑮 𝑬, 𝒌𝒛 Phonons 𝑫 𝝎, 𝒒𝒛

GF

SSE Σ 𝐺 𝐸 + ℏ𝜔, 𝑘𝑧 − 𝑞𝑧 𝐷 𝜔, 𝑞𝑧 𝐸, 𝑘𝑧
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All of OMEN (90k SLOC) in a single SDFG – (collapsed) tasklets contain more SDFGs

𝐻

𝑘𝑧, 𝐸

RGF

Σ≷

convergence

𝐺≷

Φ

𝑞𝑧 , 𝜔

RGF

Π≷

𝐷≷

𝑏

𝛻𝐻

𝑘𝑧, 𝐸, 𝑞𝑧 , 𝜔, 𝑎, 𝑏

SSE

Π≷

G≷

Σ≷

D≷

Not 𝑏

𝑏

GF
SSE

𝑖++𝑖=0 𝑞𝑧 , 𝜔𝑘𝑧, 𝐸

𝐻[0:𝑁𝑘𝑧] Φ[0:𝑁𝑞𝑧]Σ≷[0:𝑁𝑘𝑧,0:𝑁𝐸]

𝐼𝑒 𝐼𝜙

Π≷[0:𝑁𝑞𝑧,

1:𝑁𝜔]

𝐻[𝑘𝑧] Φ[𝑞𝑧]Σ≷[𝑘𝑧,E] Π≷[𝑞𝑧,𝜔]

𝐺≷[𝑘𝑧,E] 𝐷≷[𝑞𝑧,𝜔]𝐼Φ (CR: Sum)

𝐼Φ (CR: Sum)𝐼e (CR: Sum)

𝐼e (CR: Sum)

𝐷≷[0:N𝑞𝑧,

1:N𝜔]
G≷[0:𝑁𝑘𝑧,0:𝑁𝐸]

𝛻𝐻 G≷ D≷

Π≷ (CR: Sum)Σ≷ (CR: Sum)

Σ≷[…] 

(CR: Sum)

Π≷[…] 

(CR: Sum)

𝛻𝐻[…] G≷[…] D≷[…]

𝑘𝑧, 𝐸, 𝑞𝑧, 𝜔, 𝑎, 𝑏

𝐼e 𝐼Φ

𝑏
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𝐺≷

Φ

𝑞𝑧 , 𝜔

RGF

Π≷

𝐷≷

𝑏

𝛻𝐻

𝑘𝑧, 𝐸, 𝑞𝑧 , 𝜔, 𝑎, 𝑏

SSE

Π≷

G≷

Σ≷

D≷

Not 𝑏

𝑏

GF
SSE

𝑖++𝑖=0 𝑞𝑧 , 𝜔𝑘𝑧, 𝐸

𝐻[0:𝑁𝑘𝑧] Φ[0:𝑁𝑞𝑧]Σ≷[0:𝑁𝑘𝑧,0:𝑁𝐸]

𝐼𝑒 𝐼𝜙

Π≷[0:𝑁𝑞𝑧,

1:𝑁𝜔]

𝐻[𝑘𝑧] Φ[𝑞𝑧]Σ≷[𝑘𝑧,E] Π≷[𝑞𝑧,𝜔]

𝐺≷[𝑘𝑧,E] 𝐷≷[𝑞𝑧,𝜔]𝐼Φ (CR: Sum)

𝐼Φ (CR: Sum)𝐼e (CR: Sum)

𝐼e (CR: Sum)

𝐷≷[0:N𝑞𝑧,

1:N𝜔]
G≷[0:𝑁𝑘𝑧,0:𝑁𝐸]

𝛻𝐻 G≷ D≷

Π≷ (CR: Sum)Σ≷ (CR: Sum)

Σ≷[…] 

(CR: Sum)

Π≷[…] 

(CR: Sum)

𝛻𝐻[…] G≷[…] D≷[…]

𝑘𝑧, 𝐸, 𝑞𝑧, 𝜔, 𝑎, 𝑏

𝐼e 𝐼Φ

𝑏
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Zooming into SSE (large share of the runtime)

DaCe

Transform

Between 100-250x less communication at scale! (from PB to TB)
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10,240 atoms on 27,360 V100 GPUs (full-scale Summit)

- 56 Pflop/s with I/O (28% peak)

Already ~100x speedup on 25% 
of Summit – the original OMEN 

does not scale further! 

Communication time reduced 
by 417x on Piz Daint!

Volume on full-scale Summit 
from 12 PB/iter → 87 TB/iter
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An example of fine-grained data-centric optimization (i.e., how to vectorize)

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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▪ We heard today “OpenCL is not a great abstraction”

▪ Data-centric may be the solution – lay out wide pipelines (if data-independent) or streams (if data-
dependent)

▪ Encouraging initial results

20

A closing note on FPGAs ☺ - kudos to Hal!

First to run all of Polybench on FPGA (not simulated)!300k times speedup over Vivado HLS (OpenCL) ☺

simple Jacobi stencil

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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Source Code

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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Source Code Transformations

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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Source Code Transformations
SDFG

(malleable)

SDFG

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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Source Code Transformations
SDFG

(malleable)

SDFGGenerated Code

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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DIODE User Interface

21

Source Code Transformations
SDFG

(malleable)

SDFGGenerated Code Performance

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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22



spcl.inf.ethz.ch

@spcl_eth

23

Stateful dataflow graphs – one-minute introduction

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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D Data: Array containersT

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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Stateful dataflow graphs – one-minute introduction

D Data: Array containersT

c = a * b Tasklet: Fine-grained computations

A[i, 0:k] res (CR: Sum) Memlet: Data movement units
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D Data: Array containersT

c = a * b Tasklet: Fine-grained computations

A[i, 0:k] res (CR: Sum) Memlet: Data movement units

Map: Parametric parallelism scopes…
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Stateful dataflow graphs – one-minute introduction

D Data: Array containersT

c = a * b Tasklet: Fine-grained computations

A[i, 0:k] res (CR: Sum) Memlet: Data movement units

State: Control dependencies

Map: Parametric parallelism scopes…

Preprint (arXiv): Ben-Nun, de Fine Licht, Ziogas, TH: Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs
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High-performance optimization = data movement reduction


