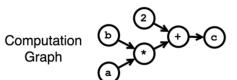

How do we leverage deep learning investments to pay for HPC compiler technology?

Mary Hall, University of Utah

Deep Learning Compiler Technology

POSTED ON SEP 13, 2018 TO AI RESEARCH, ML APPLICATIONS

Glow: A community-driven approach to AI infrastructure



A typical framework

NNVM Compiler

Various

Frontend c = a * b + 2

GPU-optimized * and + CPU-optimized * and +

Amazon

frontends

Google

Multi-Level Intermediate Representation Compiler Infrastructure

2019 European LLVM Developers Meeting

Challenges and opportunities:

- Domain-specific
- Many frontends
- Many target architectures
- Abundant parallelism and data reuse
- Must scale to large problems

http://code.fb.com/ml-applications/glow-a-community-driven-approach-to-ai-infrastructure/ http://aws.amazon.com/blogs/machine-learning/introducing-nnvm-compiler-a-new-open-end-to-end-compiler-for-ai-frameworks/

Convolutional Neural Network Forward Layer Code (in C)

```
for (n=0; n<N; n++) { // minibatch size
 for (k=0; k<K; k ++) { // output feature map
  for (c=0; c<C; c ++) { // input feature map
    for (p=0; p<P; p ++) { // output height
     ij = p * u; // input height
     for (q =0; q<Q; q ++) { // output width
      ii = q * v; // input width
      for (r=0; r<R; r ++) { // filter height
       for (s =0; s< S; s ++) \{// filter width
        output_seq[n][k][p][q] +=
             input [n][c][ij+r][ii+s] * weight[k][c][r][s];
} } } } }
```

Current State of HPC Compilers

Proprietary

- Robust
- High-quality implementations for supported architectures
- Support HPC community
- Code not performance portable across systems
- Often conservative

Open Source

- Research compilers
 - State-of-the-art
 - Experimental, untrusted
 - Difficult to track language changes
 - Gaps, such as Fortran frontend
- LLVM and gcc
 - Gaps in HPC support
 - Conservative

Current State of HPC Compilers, cont.

Challenges:

- HPC market not large enough to drive significant change to open source or even proprietary compilers
- Meanwhile, research systems not sufficiently robust for production codes

Impact:

- Productivity improvements for HPC not being exploited
- Heterogeneity will make this a bigger concern

Goal: HPC Support in Open Source Compilers

Short-term

(ECP time frame)

Extend LLVM

- Parallel IR
- Loop transformations
- OpenMP/OpenACC
- Autotuning
- Fortran frontend

Longer term (But need to start now) Work with Google on MLIR?

- Higher level of abstraction
- Composability of different views (parallelism?)
- Built-in polyhedral transformations and code generation
- Multiple backends via LLVM
- Missing frontends