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Solution: Quantized allreduce 
  
• DNNs are very robust to noise 
• We can approximate the gradient signal from each 

model’s updates by quantizing it 
• Reduces amount of data transferred 
• If done well, this does not impact the final model 

accuracy 
• Trade increased computation for reduced 

communication 
• Approaches: 

• Onebit quantization (Seide et al.) 
• Adaptive quantization (new, Dryden et al.) 
• Baseline: MPI_Allreduce, no quantization

Accuracy 

• Quantization does not impact final model 
accuracy 

• Better models are in-progress 
• Onebit quantization can work well, but did not 

converge with our hyperparameter settings and does 
not support the Adam optimizer 

• See paper for some additional (older) results

Conclusions and future work 

• Adaptive quantization successfully trades 
communication for increased computation to help 
data-parallel training scale 

• Future work: 
• GPU support 
• Better allreduce algorithms 
• More complex DNN models 
• More scalable training (SGD doesn’t scale) 

• Code available as part of LBANN: 
https://github.com/LLNL/lbann
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CHAPTER 1. INTRODUCTION
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Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Motivation 

Deep Neural Networks 
• Responsible for state-of-the-art results in object 

detection and recognition, translation, speech 
recognition, genomics, etc. 

• DNNs use many layers of neurons to build hierarchical 
representations to learn complex data 

• Training DNNs requires repeatedly presenting the 
network with many examples 

HPC for DNN training 

• Make use of HPC resources to train large DNNs fast 
and efficiently 

• Existing work focuses on heterogeneous cloud 
computing or small clusters 
• Update involves an allreduce of every replica’s updates 
• Training is bandwidth bound for large models

Goodfellow, 2016
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Adaptive quantization 

• Gradients are computed and stored as a nxm matrix of 
32-bit floats 

• That much precision is not necessary! 
• Instead: 

• Don’t send unnecessary gradients 
• Use 1 bit to send the remaining gradients 

• Work on each column of the gradient matrix separately 
(helps reduce error) 

• Draw on rate-distortion theory for guidance 
• Select 2 regions (as we have 1 bit) 
• Determine reconstruction values for each region 

• Input parameter: π, the proportion of gradients to send 
• Enables tuning how much data is sent to problem 

characteristics 

Which gradients to send? (Regions) 
• Key idea: Large gradients are most important 
• Choose thresholds τ+ and τ- to describe the regions: 

• Send every gradient ≥τ+ or ≤τ-  
• The resulting gradients are now sparse 

• Use a selection algorithm to find the (n-n/π)th largest 
gradient 

• Choose these over the entire gradient matrix to 
maximize the gradients sent 

What values should the sent gradients take? 
(Reconstruction) 
• Once regions are selected, the mean-squared error is 

minimized by choosing the mean of each region 

Representation 
• Need to send the chosen gradients plus the 

reconstruction values for each column 
• Use a variant of the compressed sparse column format 
• Metadata kept in a header 
• Use a 15-bit row index and 1-bit gradient for each value 
• Data volume is ~1/(2π) less

Example gradient and adaptively-quantized gradient matrix (π=4). Note each 
column now has two different values and some contain no values at all.

Results 

Synthetic allreduce benchmark 
• Simulate large-scale data-parallelism 
• Adaptive quantization is superior once matrices are 

moderately large, ~10.9x faster at largest scale 

MNIST and ImageNet 
• Evaluate using a simple benchmark on MNIST and 

ImageNet datasets 
• 3 4096-neuron dense layers, ReLU activations, Adam 

optimizer (Adagrad for onebit quantization) 
• 4 model replicas 

• Used 16 nodes total for MNIST, 64 for ImageNet 
• 24 cores/node 

• No hyperparameter tuning

MNIST ImageNet

Baseline 98.31% 36.4%
Adaptive 98.32% 36.4%

MNIST ImageNet

Baseline 0.053 s 2.69 s
Adaptive 0.038 s 2.00 s
Speedup 1.39x 1.34x

Above: Adaptive quantization reduces the communication time in minibatches. 
Below: Onebit and adaptive quantization both significantly reduce data sent.

Below: Average total time for each minibatch for the MNIST and ImageNet 
models, and the speedup of adaptive quantization over the baseline. Typical 
training involves tens of thousands to millions of minibatches.

Above: Test accuracies of our model on the MNIST and ImageNet datasets after 
20 epochs of training. ImageNet accuracy is top-1.

https://github.com/LLNL/lbann

