
Nikoli Dryden1,2, Brian Van Essen2, and Marc Snir1 
1Department of Computer Science, University of Illinois at Urbana-Champaign 2Lawrence Livermore National Laboratory

Gradient Quantization for Data-Parallel DNN Training

Acknowledgements
• This work performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-POST-729415)

• Experiments were performed using Livermore Computing facility
resources

• The LBANN Team

Solution: Quantized allreduce

• DNNs are very robust to noise
• We can approximate the gradient signal from each

model’s updates by quantizing it
• Reduces amount of data transferred
• If done well, this does not impact the final model

accuracy
• Trade increased computation for reduced

communication
• Approaches:

• Onebit quantization (Seide et al.)
• Adaptive quantization (new, Dryden et al.)
• Baseline: MPI_Allreduce, no quantization

Accuracy

• Quantization does not impact final model
accuracy

• Better models are in-progress
• Onebit quantization can work well, but did not

converge with our hyperparameter settings and does
not support the Adam optimizer

• See paper for some additional (older) results

Conclusions and future work

• Adaptive quantization successfully trades
communication for increased computation to help
data-parallel training scale

• Future work:
• GPU support
• Better allreduce algorithms
• More complex DNN models
• More scalable training (SGD doesn’t scale)

• Code available as part of LBANN: 
https://github.com/LLNL/lbann

References
Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. “Communication
Quantization for Data-parallel Training of Deep Neural Networks.” MLHPC, 2016.
Frank Seide, et al. “1-bit Stochastic Gradient Descent and its Application to Data-parallel
Distributed Training of Speech DNNs.” INTERSPEECH, 2014.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep Learning.” MIT Press, 2016.
Thomas Cover and Joy Thomas. “Elements of Information Theory,” 2ed. John Wiley & Sons,
2012.

CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

6

Motivation

Deep Neural Networks
• Responsible for state-of-the-art results in object

detection and recognition, translation, speech
recognition, genomics, etc.

• DNNs use many layers of neurons to build hierarchical
representations to learn complex data

• Training DNNs requires repeatedly presenting the
network with many examples

HPC for DNN training

• Make use of HPC resources to train large DNNs fast
and efficiently

• Existing work focuses on heterogeneous cloud
computing or small clusters
• Update involves an allreduce of every replica’s updates
• Training is bandwidth bound for large models

Goodfellow, 2016

Rank 0 - N0 Rank 1 - N1 Rank 2 - N2 Rank 3 - N3

Model M0 - Input Layer

Model M0 - Layer H0

Model M0 - Layer H1

Rank 1 - N5 Rank 2 - N6 Rank 3 - N7Rank 0 - N4

Model M1 - Input Layer

Model M1 - Layer H0

Model M1 - Layer H1

Peer-wise communication

DP0 MB0
Input Data Partition 0 from Lustre

DP0 MB1 DP0 MB2 DP0 MB3 DP1 MB0
Input Data Partition 1 from Lustre

DP1 MB1 DP1 MB2 DP1 MB3

Model Replica 0 Model Replica 1

Adaptive quantization

• Gradients are computed and stored as a nxm matrix of
32-bit floats

• That much precision is not necessary!
• Instead:

• Don’t send unnecessary gradients
• Use 1 bit to send the remaining gradients

• Work on each column of the gradient matrix separately
(helps reduce error)

• Draw on rate-distortion theory for guidance
• Select 2 regions (as we have 1 bit)
• Determine reconstruction values for each region

• Input parameter: π, the proportion of gradients to send
• Enables tuning how much data is sent to problem

characteristics

Which gradients to send? (Regions)
• Key idea: Large gradients are most important
• Choose thresholds τ+ and τ- to describe the regions:

• Send every gradient ≥τ+ or ≤τ-
• The resulting gradients are now sparse

• Use a selection algorithm to find the (n-n/π)th largest
gradient

• Choose these over the entire gradient matrix to
maximize the gradients sent

What values should the sent gradients take?
(Reconstruction)
• Once regions are selected, the mean-squared error is

minimized by choosing the mean of each region

Representation
• Need to send the chosen gradients plus the

reconstruction values for each column
• Use a variant of the compressed sparse column format
• Metadata kept in a header
• Use a 15-bit row index and 1-bit gradient for each value
• Data volume is ~1/(2π) less

Example gradient and adaptively-quantized gradient matrix (π=4). Note each
column now has two different values and some contain no values at all.

Results

Synthetic allreduce benchmark
• Simulate large-scale data-parallelism
• Adaptive quantization is superior once matrices are

moderately large, ~10.9x faster at largest scale

MNIST and ImageNet
• Evaluate using a simple benchmark on MNIST and

ImageNet datasets
• 3 4096-neuron dense layers, ReLU activations, Adam

optimizer (Adagrad for onebit quantization)
• 4 model replicas

• Used 16 nodes total for MNIST, 64 for ImageNet
• 24 cores/node

• No hyperparameter tuning

MNIST ImageNet

Baseline 98.31% 36.4%
Adaptive 98.32% 36.4%

MNIST ImageNet

Baseline 0.053 s 2.69 s
Adaptive 0.038 s 2.00 s
Speedup 1.39x 1.34x

Above: Adaptive quantization reduces the communication time in minibatches.
Below: Onebit and adaptive quantization both significantly reduce data sent.

Below: Average total time for each minibatch for the MNIST and ImageNet
models, and the speedup of adaptive quantization over the baseline. Typical
training involves tens of thousands to millions of minibatches.

Above: Test accuracies of our model on the MNIST and ImageNet datasets after
20 epochs of training. ImageNet accuracy is top-1.

https://github.com/LLNL/lbann

