Programming NVM Systems

Random Access Talk

Jeffrey S. Vetter
Seyong Lee, Joel Denny, Jungwon Kim, et al.

Presented to
Salishan Conference on High Speed Computing
Gleneden Beach, Oregon
27 Apr 2016
Executive Summary

• Architectures are growing more complex
 – This will get worse; not better

• Programming systems must provide performance portability (in addition to functional portability)!!

• Programming NVM systems is the next major challenge
Exascale architecture targets circa 2009
2009 Exascale Challenges Workshop in San Diego

Attendees envisioned two possible architectural swim lanes:
1. Homogeneous many-core thin-node system
2. Heterogeneous (accelerator + CPU) fat-node system

<table>
<thead>
<tr>
<th>System attributes</th>
<th>2009</th>
<th>“Pre-Exascale”</th>
<th>“Exascale”</th>
</tr>
</thead>
<tbody>
<tr>
<td>System peak</td>
<td>2 PF</td>
<td>100-200 PF/s</td>
<td>1 Exaflop/s</td>
</tr>
<tr>
<td>Power</td>
<td>6 MW</td>
<td>15 MW</td>
<td>20 MW</td>
</tr>
<tr>
<td>System memory</td>
<td>0.3 PB</td>
<td>5 PB</td>
<td>32–64 PB</td>
</tr>
<tr>
<td>Storage</td>
<td>15 PB</td>
<td>150 PB</td>
<td>500 PB</td>
</tr>
<tr>
<td>Node performance</td>
<td>125 GF</td>
<td>0.5 TF</td>
<td>7 TF</td>
</tr>
<tr>
<td>Node memory BW</td>
<td>25 GB/s</td>
<td>0.1 TB/s</td>
<td>1 TB/s</td>
</tr>
<tr>
<td>Node concurrency</td>
<td>12</td>
<td>O(100)</td>
<td>O(1,000)</td>
</tr>
<tr>
<td>System size (nodes)</td>
<td>18,700</td>
<td>500,000</td>
<td>50,000</td>
</tr>
<tr>
<td>Node interconnect BW</td>
<td>1.5 GB/s</td>
<td>150 GB/s</td>
<td>1 TB/s</td>
</tr>
<tr>
<td>IO Bandwidth</td>
<td>0.2 TB/s</td>
<td>10 TB/s</td>
<td></td>
</tr>
<tr>
<td>MTTI</td>
<td>day</td>
<td>O(1 day)</td>
<td></td>
</tr>
</tbody>
</table>
Current ASCR Computing At a Glance

<table>
<thead>
<tr>
<th>System attributes</th>
<th>NERSC Now</th>
<th>OLCF Now</th>
<th>ALCF Now</th>
<th>NERSC Upgrade</th>
<th>OLCF Upgrade</th>
<th>ALCF Upgrades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Installation</td>
<td>Edison</td>
<td>TITAN</td>
<td>MIRA</td>
<td>Cori 2016</td>
<td>Summit 2017-2018</td>
<td>Theta 2016</td>
</tr>
<tr>
<td>System peak (PF)</td>
<td>2.6</td>
<td>27</td>
<td>10</td>
<td>> 30</td>
<td>150</td>
<td>>8.5</td>
</tr>
<tr>
<td>Peak Power (MW)</td>
<td>2</td>
<td>9</td>
<td>4.8</td>
<td>< 3.7</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>Total system memory</td>
<td>357 TB</td>
<td>710TB</td>
<td>768TB</td>
<td>~1 PB DDR4 + High Bandwidth Memory (HBM)+1.5PB persistent memory</td>
<td>> 1.74 PB DDR4 + HBM + 2.8 PB persistent memory</td>
<td>>480 TB DDR4 + High Bandwidth Memory (HBM)</td>
</tr>
<tr>
<td>Node performance (TF)</td>
<td>0.460</td>
<td>1.452</td>
<td>0.204</td>
<td>> 3</td>
<td>> 40</td>
<td>> 3</td>
</tr>
<tr>
<td>Node processors</td>
<td>Intel Ivy Bridge</td>
<td>AMD Opteron Nvidia Kepler</td>
<td>64-bit PowerPC A2</td>
<td>Intel Knights Landing many core CPUs Intel Haswell CPU in data partition</td>
<td>Multiple IBM Power9 CPUs & multiple Nvidia Voltas GPUs Intel Knights Landing Xeon Phi many core CPUs</td>
<td>Knights Hill Xeon Phi many core CPUs</td>
</tr>
<tr>
<td>System size (nodes)</td>
<td>5,600 nodes</td>
<td>18,688 nodes</td>
<td>49,152</td>
<td>9,300 nodes</td>
<td>1,900 nodes in data partition</td>
<td>~3,500 nodes</td>
</tr>
<tr>
<td>System Interconnect</td>
<td>Aries</td>
<td>Gemini</td>
<td>5D Torus</td>
<td>Aries</td>
<td>Dual Rail EDR-IB</td>
<td>Aries</td>
</tr>
<tr>
<td>File System</td>
<td>7.6 PB 168 GB/s, Lustre®</td>
<td>32 PB 1 TB/s, Lustre®</td>
<td>26 PB 300 GB/s GPFS™</td>
<td>28 PB 744 GB/s Lustre®</td>
<td>120 PB 1 TB/s GPFS™</td>
<td>10PB, 210 GB/s Lustre initial</td>
</tr>
</tbody>
</table>

Complexity α T
Memory Systems are Diversifying

- HMC, HBM/2/3, LPDDR4, GDDR5X, WIDEIO2, etc
- 2.5D, 3D Stacking
- New devices (ReRAM, PCRAM, STT-MRAM, Xpoint)
- Configuration diversity
 - Fused, shared memory
 - Scratchpads
 - Write through, write back, etc
 - Consistency and coherence protocols
 - Virtual v. Physical, paging strategies

NVRAM Technology Continues to Improve – Driven by Market Forces

Facebook Likes Intel’s 3D XPoint

Google joins open hardware effort
Rick Merritt
3/10/2016 07:56 AM EST
7 comments

SAN JOSE, Calif.—Facebook said it hopes to use Intel’s emerging 3D XPoint memories in its data centers. Meanwhile Google joined its archival’s open hardware efforts to drive standards ranging from high-power compute racks to giant form factors for disk drives.

The two moves were likely the highest impact announcements at the annual event of the Facebook-led Open Compute Project (OCP) here. Among other news, Intel showed a new 16-core Xeon SoC with dual 10G Ethernet controllers and a prototype chip merging Xeon with an Arria FPGA in a single package.

Forbes Tech

Intel And Micron Jointly Announce Game-Changing 3D XPoint Memory Technology

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg
Comparison of Emerging Memory Technologies

<table>
<thead>
<tr>
<th></th>
<th>SRAM</th>
<th>DRAM</th>
<th>eDRAM</th>
<th>2D NAND Flash</th>
<th>3D NAND Flash</th>
<th>PCRAM</th>
<th>STTRAM</th>
<th>2D ReRAM</th>
<th>3D ReRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Retention</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Cell Size (F²)</td>
<td>50-200</td>
<td>4-6</td>
<td>19-26</td>
<td>2-5</td>
<td><1</td>
<td>4-10</td>
<td>8-40</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>Minimum F demonstrated (nm)</td>
<td>14</td>
<td>25</td>
<td>22</td>
<td>16</td>
<td>64</td>
<td>20</td>
<td>28</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>Read Time (ns)</td>
<td>< 1</td>
<td>30</td>
<td>5</td>
<td>10^4</td>
<td>10^4</td>
<td>10-50</td>
<td>3-10</td>
<td>10-50</td>
<td>10-50</td>
</tr>
<tr>
<td>Write Time (ns)</td>
<td>< 1</td>
<td>50</td>
<td>5</td>
<td>10^5</td>
<td>10^5</td>
<td>100-300</td>
<td>3-10</td>
<td>10-50</td>
<td>10-50</td>
</tr>
<tr>
<td>Number of Rewrites</td>
<td>10^{16}</td>
<td>10^{16}</td>
<td>10^{16}</td>
<td>$10^{4}-10^5$</td>
<td>$10^{4}-10^5$</td>
<td>10^8-10^{10}</td>
<td>10^{15}</td>
<td>10^8-10^{12}</td>
<td>10^8-10^{12}</td>
</tr>
<tr>
<td>Read Power</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Write Power</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Power (other than R/W)</td>
<td>Leakage</td>
<td>Refresh</td>
<td>Refresh</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Sneak</td>
</tr>
<tr>
<td>Maturity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intel/Micron Xpoint?

http://ft.ornl.gov/trac/blackcomb
As NVM improves, it is working its way toward the processor core

- Newer technologies improve
 - density,
 - power usage,
 - durability
 - r/w performance

- In scalable systems, a variety of architectures exist
 - NVM in the SAN
 - NVM nodes in system
 - NVM in each node
Opportunities for NVM in Emerging Systems

- Burst Buffers, C/R
- In situ visualization
- In-mem tables

http://ft.ornl.gov/eavl
Programming NVM Systems
Design Goals for NVM Programming Systems

• Active area of research
 – See survey

• Architectures will vary dramatically
 – How should we design the node?
 – Portable across various NVM architectures

• Performance for HPC scenarios
 – Allow user or compiler/runtime/os to exploit NVM
 – Asymmetric R/W
 – Remote/Local

• Security

• Assume lower power costs under normal usage

• MPI and OpenMP do not solve this problem.

• Correctness and durability
 – Enhanced ECC for NVM devices
 – A crash or erroneous program could corrupt the NVM data structures
 – Programming system needs to provide support for this model

• ACID
 – Atomicity: A transaction is “all or nothing”
 – Consistency: Takes data from one consistent state to another
 – Isolation: Concurrent transactions appear to be one after another
 – Durability: Changes to data will remain across system boots

http://j.mp/nvm-sw-survey
Ideally, NVM would hold data indefinitely

- Large grids, tables, KV stores, etc would remain in the NVM (similar to a filesystem)
- A crash or erroneous program could corrupt the NVM data structures
- Programming system needs to provide support for this model
 - ACID
 - Atomicity: A transaction is “all or nothing”
 - Consistency: Takes data from one consistent state to another
 - Isolation: Concurrent transactions appears to be one after another
 - Durability: Changes to data will remain across system boots
NVL-C: Portable Programming for NVMM

- Minimal, familiar, programming interface:
 - Minimal C language extensions.
 - App can still use DRAM.
- Pointer safety:
 - Persistence creates new categories of pointer bugs.
 - Best to enforce pointer safety constraints at compile time rather than run time.
- Transactions:
 - Prevent corruption of persistent memory in case of application or system failure.
- Language extensions enable:
 - Compile-time safety constraints.
 - NVM-related compiler analyses and optimizations.
- LLVM-based:
 - Core of compiler can be reused for other front ends and languages.
 - Can take advantage of LLVM ecosystem.

```c
#include <nvl.h>
struct list {
    int value;
    nvl struct list *next;
};
void remove(int k) {
    nvl_heap_t *heap = nvl_open("foo.nvl");
    nvl struct list *a = nvl_get_root(heap, struct list);
    #pragma nvl atomic
    while (a->next != NULL) {
        if (a->next->value == k)
            a->next = a->next->next;
        else
            a = a->next;
    }
    nvl_close(heap);
}
```

Preliminary Results

- Applications extended with NVL-C
- Compiled with NVL-C
- Executed on Fusion ioScale
- Compared to DRAM
- Various levels of optimization

Table 3: Symbols Used in the Result Figures

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExtMem or ExM</td>
<td>Use persistent storage as if extended DRAM</td>
</tr>
<tr>
<td>No Durability or ND</td>
<td>Skip runtime operations for durability</td>
</tr>
<tr>
<td>Base or B</td>
<td>Basic NVL-C version w/o Safety, RefCnt, and transaction (TX0, TX1, ...)</td>
</tr>
<tr>
<td>Safety or S</td>
<td>Automatic pointer-safety checking</td>
</tr>
<tr>
<td>RefCnt or R</td>
<td>Automatic reference counting</td>
</tr>
<tr>
<td>TX0</td>
<td>B+S+R - Enforce only durability of each NVM write</td>
</tr>
<tr>
<td>TX1</td>
<td>B+S+R + Enforce ACID properties of each transaction</td>
</tr>
<tr>
<td>TX2</td>
<td>TX1 + aggregated transaction using backup clauses</td>
</tr>
<tr>
<td>TX3</td>
<td>TX2 + skipping unnecessary backup using clobber clauses</td>
</tr>
<tr>
<td>TX4</td>
<td>TX3 at the granularity of each loop</td>
</tr>
<tr>
<td>CLFlush</td>
<td>Flush cache line to memory</td>
</tr>
<tr>
<td>MSync</td>
<td>Synchronize memory map with persistent storage</td>
</tr>
</tbody>
</table>

LULESH

XSBENCH
PMES Workshop @ SC16

- https://j.mp/pmes2016
- [@SC16](https://j.mp/pmes2016)
- Position papers due June 17
Summary

• Recent trends in extreme-scale HPC paint an ambiguous future
 – Contemporary systems provide evidence that power constraints are driving architectures to change rapidly
 – Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design, memory systems, I/O
 – Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
 – Applications will not be functionally or performance portable across architectures
 – Programming and operating systems need major redesign to address these architectural changes
 – Procurements, acceptance testing, and operations of today’s new platforms depend on performance prediction and benchmarking.

• We need performance portable programming models now more than ever!

• Programming systems must provide performance portability (in addition to functional portability)!!
 – New memory hierarchies with NVM everywhere
 – Heterogeneous systems
Acknowledgements

- **Contributors and Sponsors**
 - US Department of Energy Office of Science
 - DOE Vancouver Project: https://ft.ornl.gov/trac/vancouver
 - DOE Blackcomb Project: https://ft.ornl.gov/trac/blackcomb
 - DOE ExMatEx Codesign Center: http://codesign.lanl.gov
 - DOE Cesar Codesign Center: http://cesar.mcs.anl.gov/
 - DOE Exascale Efforts: http://science.energy.gov/ascr/research/computer-science/
 - US National Science Foundation Keeneland Project: http://keeneland.gatech.edu
 - US DARPA
 - NVIDIA CUDA Center of Excellence
Bonus Material