
Variability: A Performance Nightmare

Allan	 Porterfield	
RENCI,	 UNC-‐Chapel	 Hill	

	
	

My Interests

Compiler Optimization – improve application performance
Adaptive Runtime Scheduling – reduce application energy demands

Variability make both of these HARD (impossible?).

Chips are different (center of the wafer vs edge)
Temperature changes both time and energy required
BIOS settings change time and energy required
Random latencies from other system load (network, file …)
Butterfly effect on adaptive algorithms

Autotuning Problems

Run	 #	 nofuse	 nofuseX16	 nofuseX32	 nofuseX64	

1	 5.333394	 	 5.147411	 	 5.086881	 5.304340	 	

Autuning results from Jacobi-2D from PolyBench
 Dell M620 with 2 Intel E5-2680 @ 2.7GHz
 best 4 results from over a thousand compiler configurations

Looks like tiling improves cache utilization until a cache size is
exceeded at which point it falls almost 6%

Autotuning Problems

Run	 #	 nofuse	 nofuseX16	 nofuseX32	 nofuseX64	

1	 5.333394	 	 5.147411	 	 5.086881	 5.304340	 	

2	 5.144302	 5.077856	 5.125735	 5.138848	 	

3	 5.369150	 5.345376	 	 5.203415	 5.314528	

4	 5.037441	 5.115155	 5.179577	 5.340713	

5	 5.408004	 5.333346	 5.156341	 5.083266	

6	 5.242719	 5.217077	 5.373121	 5.022142	

7	 5.055487	 5.156706	 	 5.199737	 5.084126	 	

Average	 5.22721	 5.19899	 5.18926	 5.18399	

But on multiple runs a different story appears
– Original answer sub-optimal

Better Autotuning?

Make one pass of over all of the options (may be thousands)

Identify the fastest options (within 10%(?) of the absolute fastest)
(hopefully single digits versions)

Rerun subset 10+ times to find best average

Scheduling problem

Nodes	 Minimum	 Maximum	 Average	 Range	 Slowdown	

0-‐5	 	 	 	 3419	 	 	 	 3898	 3523	 (3481)	 14(3.8)%	 	 	 	 	 	 	 n/a	

6-‐11	 	 	 	 3495	 	 	 	 3594	 	 	 	 	 3553	 	 	 	 2.8%	 	 	 	 	 	 	 2.1%	

12-‐17	 	 	 	 3614	 	 	 	 3743	 	 	 	 	 3677	 	 	 	 3.5%	 	 	 	 	 	 	 5.6%	

18-‐23	 	 	 	 3434	 	 	 	 3597	 	 	 	 	 3500	 	 	 	 4.7%	 	 	 	 	 	 	 0.5%	

24-‐29	 	 	 	 3489	 	 	 	 3573	 	 	 	 	 3529	 	 	 	 2.4%	 	 	 	 	 	 	 1.3%	

ADCIRC – storm surge simulation
- synchronous SPMD with global synchronization each time step
Test on 6 Nodes Intel E5-2450 @ 2.1 GHz
10 runs on each region – same input used for all tests
Test ran approximately 1 hour – about 20% of production run

Average and Slowdown ignore one very slow test on region 0-5

Better SPMD Scheduling?

Rank nodes within a cluster according to their “slowest” processor
for Intel processors – probably the amount of time a node spends

in TurboBoost

Try to schedule jobs on nodes on groups of nodes.
ignores network demand issues which can outweigh SPMD

synchronization delays

Energy Usage Problem

ADCIRC – storm surge simulation
16 Nodes of Intel E5-2450 @ 2.1 GHz
10 identical executions – sorted by time
>10% between chips

Better Energy Usage?

Even socket energy demands – by reducing use by
‘expensive’ sockets

Schedule less work

 idle one or more cores
 use DVFS/DCM to reduce clock rate of cores

Problem with Understanding Results

100 executions (in order) of HPCCG
2 socket Intel E5-2650 @2.3GHz

Which run used?

Trusting Energy Results

System design evident
-- Socket 0 blue-brown lines
-- Socket 1 yellow-green lines
Air blows over Socket 1 then Socket 0, which runs measurable hotter

Trusting Results
100 runs of test Castro AMR execution on 2 different days

 input- inputs.2d.cyl_in_cartcoords
4 Nodes Intel E5-2450 @ 2.1 GHz
Same nodes, executable and inputs used both days

Date	 Minimum	 Maximum	 Average	

4/18/2016	 18.56	 34.51	 25.11	

4/19/2016	 16.51	 19.13	 17.71	

Differences
 Slurm Queue 4/18 ~4000 run as root
 basically every core in the other nodes of
 the bladecenter being used executing a
 Genetics workflow
 Slurm Queue 4/19 ~680 run as user
 only half of nodes in bladecenter busy
 executing ADCIRC

During debugging could repeat once but vanished during
efforts to understand the cause

Easier to trust results?

Papers need to describe execution environment
 Temperature

 Other workload on system
 …

Graphs that show the variance

 Candlestick, Whisker …

